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Summary
Empowered by massively parallel computing and web-scale datasets, deep generative
models have led to improvements in many artificial intelligence tasks. Latent vari-
able models offer an elegant framework to augment generative algorithms with new
capabilities. Nonetheless, in the field of natural language processing, it is unclear how
best to combine latent variables with the powerful and omnipresent language models.
In this thesis, we explore advanced optimization methods and the design of latent
variable models to complete natural language processing tasks. The dissertation is
organized into three parts.

In the first part, we present three architectures of latent variable language models.
We discuss structured latent spaces which can be structured as large knowledge bases
(e.g., Wikipedia) or characterized by a latent text generation process.

In the second part, we dive into the topic of variational inference and optimization.
We present a novel gradient estimator for discrete latent variables named OVIS. We
found that, even with OVIS, optimizing deep latent variable models remains challeng-
ing. We show, based on empirical data, that Rényi divergence variational inference
can be applied to circumvent some of the learning issues.

In the third part, we focus on solving medical question answering and informa-
tion retrieval tasks. First, we experiment with prompting pre-trained large language
models (GPT-3) to generate step-by-step problem solutions. We report that, in many
cases, GPT-3 can reason about challenging medical questions. Second, we introduce
a new framework, dubbed VOD, for learning retrieval-augmented language models
using variational inference. We apply VOD to optimize question-answering systems
augmented with a large fraction of Wikipedia and report state-of-the-art performances
on medical question-answering benchmarks. Last, we employ the resulting model for
information retrieval tasks in the domain of rare disease diagnosis.
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Resumé
Beriget med massiv parallel databehandling og store datasæt, har dybe generative
modeller ført til forbedringer i mange opgaver indenfor kunstig intelligens. Latente
variable modeller tilbyder et effektivt framework til at udvide generative algorit-
mer med nye kapaciteter. Ikke desto mindre er det uklart, hvordan man inden
for sprogteknologien bedst kan kombinere latente variabler med de anvendelige og
allestedsnærværende sprogmodeller. I denne afhandling udforsker vi advancerede op-
timeringsmetoder samt designet af latente variable modeller, som kan fuldføre opgaver
indenfor sprogteknologi. Afhandlingen er opdelt i tre dele.

I første del gennemgår vi tre forskellige design af latente variable sprogmodeller. Vi
diskuterer strukturerede latente rum, der kan struktureres som store vidensdatabaser
(såsom f.eks. Wikipedia) eller karakteriseres ved en latent tekstgenereringsproces.

I anden del dykker vi ned i emnet variationel inferens og optimering. Vi præsen-
terer en ny gradientestimator for diskrete latente variabler ved navn OVIS. Vi har
fundet, at det til stadighed forbliver vanskeligt at optimere dybe latente varible mod-
eller, også med OVIS. Baseret på empiri, viser vi, at Rényi divergens variationel
inferens kan anvendes til at omgå nogle af læringsproblemerne.

I den tredje og sidste del af afhandlingen, fokuserer vi på at løse medicinske
question-answering og information retrieval opgaver. Først eksperimenterer vi med
at få forudtrænede, store sprogmodeller (GPT-3) til at generere trin-for-trin prob-
lemløsninger. Vi rapporterer, at GPT-3 i mange tilfælde kan drage konklusioner
vedrørende vanskelige medicinske spørgsmål. Efterfølgende introducerer vi et nyt
framework, navngivet VOD, til at lære retrieval-augmented sprogmodeller ved hjælp
af variationel inferens. Vi anvender VOD til at optimere question-answering syste-
mer, beriget med Wikipedia artikler, og rapporterer state-of-the-art præstationer på
medicinske question-answering benchmarks. Endelig, anvender vi den resulterende
model for information retrieval opgaver inden for området: sjældne sygdomme.
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CHAPTER 1
Introduction

Computational science aims to understand and solve complex problems using ad-
vanced computing capabilities. Machine learning, a core discipline of computational
science, has progressed immensely in the last decade. In particular, deep learning al-
gorithms, empowered by the rise of massively parallel computing and large datasets,
led to breakthroughs in various artificial intelligence tasks, such as computer vision
and natural language processing. Machine learning algorithms are capable of harness-
ing the knowledge dormant in vast amounts of unstructured data (e.g., the internet,
medical records, and physical measurements). The main motivation of this thesis is
to apply the acquired knowledge to solve practical scientific and societal problems.
For instance by providing better and more accessible healthcare thanks to the devel-
opment of advanced diagnostic tools.
Deep generative models are a class of deep learning models that can learn complex
distributions over high-dimensional data such as images or text. To learn robust and
realistic generative processes, such models must acquire deep structural knowledge
about the data domain from a large amount of unstructured training data. During
the time of this thesis, generative models have progressed tremendously. They are
now able to generate coherent text documents (Brown et al. 2020a; Radford et al.
2019a), to reason about problems using written language (Kojima et al. 2022) and to
convert written instructions into photo-realistic images (Ramesh et al. 2022; Saharia
et al. 2022) as well as videos (Singer et al. 2022).
This thesis aims to advance the state-of-the-art in deep generative modelling for
natural language processing. In particular, we focus on latent variable models, a
class of deep generative models which generative process is augmented with a set of
unobserved auxiliary variables (latent variables). Although the beginning of this re-
search was influenced by the literature in representation learning,1 this work diverged
from this path. This thesis focuses on the design and the optimization of advanced
stochastic generative processes for text. In particular, we study variational inference
and discrete latent variables, which, in some cases, encode complex actions such as
searching through a knowledge base or generating hypotheses using written language.
Ultimately, we are interested in developing methods that are of practical use; we ap-
ply latent variable language models to real-world natural language processing tasks:

1The beginning of this thesis was particularly inspired and motivated by “Generating Sentences
from a Continuous Space” (Bowman et al. 2016)
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answering medical questions and retrieving information to support the diagnostic of
rare diseases.

1 Thesis outline
This dissertation is arranged into the main text that discusses and synthesizes the
contributions of this thesis and an appendix section collecting the four included papers.
It is recommended to use the main text as a basis to probe the different parts of
the contributions and delve into the papers when technical derivations and further
experimental details seem required.

The main body of this dissertation consists of four parts. The first part establishes
the background knowledge supporting the remaining of the dissertation. This rest of
the dissertation is organized around three main research questions:
Q1: How to design deep latent variable models for text data?
Q2: How to optimize latent variable models using variational inference?
Q3: How to apply latent variable models to natural language processing tasks?
Q1 will be treated in Part II, in which we present three types of latent variable models
for natural language processing (Papers A, C and D). Q2 will be treated in Part III,
in which we discuss the topic of variational inference and optimization. We revisit
OVIS, the gradient estimator for discrete latent variable models presented in Paper
B and experiment with Rényi divergences to stabilize the optimization of deep latent
variable models (Paper B and D). Q3 will be treated in Part IV, in which we apply
latent variable models to solve medical tasks: question answering and information
retrieval (Papers C and D).

Part I Chapters 2, 3 and 4 introduce the relevant background for this dissertation.
Chapter 2 reviews the basics of Monte Carlo methods, notably focusing on importance
sampling and gradient estimation. Chapter 3 discusses latent variable models and
variational inference, focusing on three types of multiple variational likelihood lower
bounds. Chapter 4 presents the two classes of generative models: language models
and Variational Autoencoders.

Part II (Q1) Chapters 5 and 6 provide an overview of the three types of latent
variable models for text modelling. Chapter 5 presents BIVA, a deep hierarchical
Variational Autoencoder (Paper A). Chapter 6 discusses two models which latent
variable is text: a question-answering model with a latent reasoning process (Paper
C) and an open-domain question-answering model, in which the latent space is a large
collection of documents (Paper D).

Part III (Q2) In chapters 7 and 8, we review the contributions made in the domain
of optimization latent variable models using importance weighted bounds. Chapter 7
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revisits OVIS: a new class of gradient estimators for discrete latent variable models in-
troduced in Paper B. We begin with a background section about variational inference
for non-reparameterizable variational distributions and continue with an in-depth
theoretical review of the OVIS estimators. We conclude with a brief review of the em-
pirical results and a discussion of the limitations of our method. Chapter 8 discusses
the use of Rényi divergence variational inference (Li and Turner 2016) to overcome
some of the learning issues that arise when maximizing importance-weighted bounds.
We present empirical results gathered from Papers B and D.

Part IV (Q3) Chapters 9 and 10 are concerned with the practical application of
latent variable models for the task of medical question answering an information
retrieval. Chapter 9 details a method for answering and reasoning about medical
questions using large language models (Paper C). Chapter 10 concentrates on the
task of open-domain question answering (Paper D). We present the Variational Open-
Domain (VOD) framework; a framework for probabilistic and end-to-end learning of
retrieval-augmented language models using variational inference. We review the main
empirical results, covering the tasks of question-answering and information retrieval.
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Part I

Background





CHAPTER 2
Monte Carlo Methods

Probability theory provides a framework for modelling many possible outcomes and
quantifying knowledge; it is therefore a core component of machine learning systems.
In this thesis, we study generative processes that are inherently stochastic and there-
fore are difficult to study because the analytical solution to the learning problem is
often intractable. Monte Carlo methods, consisting of studying a system through re-
peated simulation, provide a framework to leverage advanced computing capabilities
to understand and solve such complex problems.

In many applications, we are interested in estimating the weighted average of a
function f given a probability distribution p(z) where z is a random variable defined
on a probability space Z. This corresponds to the integral:

F := Ep(z) [f(z)] =
∫

z∈Z
p(z)f(z)dz . (2.1)

Nonetheless, evaluating the expected value might be impossible in practice, because
the integration problem is intractable, or because the probability metric p(z) is un-
known. Monte Carlo simulation allows us to estimate the expected value using a set
of N random samples z1, . . . , zN ∼ p(z) drawn independently and with replacement:

F̂mc
N := 1

N

N∑
i=1

f(zi) (2.2)

The estimator F̂mc
N converges to the expected value E [f(z)] in the limit of large N ,

i.e., the estimation error F̂mc
N − E [f(z)] vanishes as N → ∞ and has a variance

Var
[
F̂mc

N

]
= 1

N

N∑
i=1

(
f(zi) − Ep(z) [f(z)]

)2
. (2.3)

This means that, given a sufficiently large number of samples, the integral 2.1 can be
accurately approximated without knowing the analytical solution.

1 Importance Sampling
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In other applications, it is impossible
to sample from the distribution p(z), even
if the probability of each sample can be
evaluated. In that setting, Importance
sampling (IS) can be applied to evalu-
ate the weighted average of f(z) given
samples drawn from a proposal distribu-
tion q(z) satisfying q(z) > 0 wherever
p(z) > 0. The importance sampling es-
timator is defined as

F̂ is
N := 1

N

N∑
i=1

w(zi)f(zi) (2.4)

with importance weights w(z) := p(z)
q(z) is

an unbiased estimate of Ep(z) [f(z)] and
consists of re-weighting the samples from
q(z) with the ratio of densities w(z), as
illustrated in Figure 2.1.

Figure 2.1: Importance Sampling. Es-
timating the mean of p(x) using N = 10
samples from q(x) and with importance
weights defined as w(x) = p(x)/q(x).

When applying an importance sampling estimator, the choice of the proposal
distribution is essential. Although the variance of the estimator:

Var[F̂ is
N ] = 1

N
Ep(z)

[
w2(z)f2(z) − F2] , (2.5)

scales as ∼ N−1 but depends on the choice of q(z). The proposal distribution q⋆(z)
that minimizes the variance of the importance sampling estimator is (derivation be-
low):

q⋆(z) := p(z)|f(z)|∑
x∈Z p(z)|f(z)|

. (2.6)

Varq(z) [w(z)f(z)] =
(∫

x∈Z
q(z) (w(z)f(z))2 dz

)(∫
x∈Z

q(z)12dz
)

− F2

≥
(∫

x∈Z
q(z)w(z)|f(z)|dz

)2

− F2 (Cauchy–Schwarz)

= Z

∫
x∈Z

p2(z)f2(z)
p(z)|f(z)| dz − F2

=
∫

x∈Z
q⋆(z)w2

⋆(z)f2(z) − F2dz

= Varq⋆(z) [w⋆(z)|f(z)|] .
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1.1 Self-normalized importance sampling
The standard importance sampling estimator is unbiased. Nonetheless, in practice,
we might prefer to use a biased self-normalized version of the estimator because the
standard estimator (i) might suffer from high variance (ii) is intractable because p(z)
is only known up to a constant. self-normalized importance sampling (SNIS) is defined
based on the un-normalized weights w̄(z) := Z · w(z) (where Z is a constant):

F̂ snis
N := 1

N

N∑
i=1

w̃(zi)f(zi) where w̃(zi) := w̄(zi)∑N
i′=1 w̄(zi′)

. (2.8)

The estimator F̂ snis
N is consistent (i.e. it converges to the true expected value with

probability one) as the denominator
∑N

i′=1 w̄(zi′) converges to Eq(z′) [w̄(z′)] = Z. The
bias of F̂ snis

N scales as ∼ N−1 and the variance is approximately (Kong 1992):

Varq(z)

[
F̂ snis

N

]
≈ Varp(z)

[
F̂mc

N

]
(1 + Varq(z) [w̄(z)]) . (2.9)

Thus, we can expect the variance of the self-normalized importance sampling estimate
to be as low as the variance of the standard Monte Carlo estimate 2.2 as long as the
variance of the importance weights Varq(z) [w̄(z)] is sufficiently low.

1.2 Effective sample size
Equation 2.9 quantifies the variance of the importance sampling estimate relative to
the variance of a standard Monte Carlo estimate (with samples drawn from p(z)).
Kong 1992 suggested using the above result to define the Effective Sample Size (ESS)
to diagnose self-normalized importance sampling estimates. The ESS is defined as:

neff := N

1 + Varq(z),N [w̄(z)]
≈

(∑N
i=1 w̄(zi)

)2

∑N
i=1 w̄2(zi)

. (2.10)

In practice, The value of the effective sample size neff corresponds to the number
of samples drawn from q(z) that are assigned with a weight w(z) which value is
significantly large to affect the importance sampling estimate; it measures how many
sample from q(z) are effectively used to estimate Ep(z) [f(z)].

Limitations and alternative ESS The effective sample size might fail whenever
all samples from q(z) are weighted equally and p(z) ≈ 0. In that case, the effective
sample size is large, but the estimate is likely inaccurate; one might then turn to use
the variance of F̂ snis

N as a secondary diagnostic.
Nonetheless, The optimal proposal defined in Equation 2.6 is proportional p(z)|f(z)|

and neff is independent of the value f(z). Alternatively, the effective sample size can
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be defined with weights w̄(z) = |f(z)|p(z)
q(z) , which is the definition adopted in this the-

sis.1 In Figure 2.2, we report the bias, variance and effective sample size of three
estimators: standard MC, IS and SNIS.

Figure 2.2: Variance, bias and effective sample size. Estimating the mean of
p(z) = N (10, 12) using standard Monte Carlo (MC), importance sampling (IS) and
self-normalized importance sampling (SNIS) with q(z) = N (12, 22). We report trends
for 10000 draws for each value of N = 1 . . . 10000 samples.

1.3 Priority sampling
In the case of a finite sampling space, estimating the weighted average via standard
Monte Carlo might be inefficient because each sample can be drawn multiple times.
Priority sampling (Duffield, Lund, and Thorup 2007) allows estimating the weighted
average using samples drawn without replacement.

Given a sample space Z of size N with probabilities p1, . . . , pN and a function with
values f1, . . . , fN , priority sampling allows estimating the weighted average

∑N
i=1 pifi

using a subset of K < N samples. Using a sequence of random weights u1, . . . , un ∼
Uniform(0, 1], we define a priority key pi/ui for each value in the sampling space

1See Nowozin 2015 for a great introduction to effective sample size and Owen 2013, Chapter 9,
for more information about the diagnostic of importance samplers and the effective sample size.
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Figure 2.3: Priority sampling. Estimation of F = Ep[g] with probabilities pi :=∑N
i=1

exp fi/
∑

j=1
exp fj, with fi ∼ N (0, 32) and with N = 100. We apply Monte

Carlo (sampling with replacement), priority sampling and priority sampling with self-
normalized weights (sampling without replacement). We use gi = fi in the left side
of the plot, and values gi ∼ N (0, 32) sampled independently of fi in the right side.
In both cases, self-normalized priority sampling (green) converges faster than the two
other estimators.

and let τ be the K + 1-th largest key. The value of the threshold τ defines a set
of K samples S = {i ∈ [1, N ] | pi/ui > τ}. Priority sampling can be interpreted
as an importance sampling estimator with weights si := max(pi, τ); this gives us an
unbiased estimate of the weighted average:

Ep(u1,...,uN )

∑
j∈S

sjfj

 =
N∑

i=1
pifi . (2.11)

The priority sampling estimate 2.11 is an importance sampling estimate and there-
fore it is often beneficial to apply self-normalization (Section 1.1) with weights s̃i =
si

∑
j∈S sjfj . In figure 2.3, we illustrate priority sampling and self-normalize prior-

ity sampling. We refer to Vieira 2017 for more information about priority sampling,
including the proof of unbiasedness for Equation 2.11.

2 Gradient Estimation
Automatic differentiation software like Tensorflow (Abadi et al. 2016), PyTorch (Paszke
et al. 2019) and JAX (Frostig, Johnson, and Leary 2018) allow differentiating deep
neural networks and optimizing them via backpropagation. In the case of Monte
Carlo objectives such as Equation 2.1, the computation graph includes one or many
sampling steps which are not trivially differentiable. In this section, we present differ-
ent strategies to obtain differentiable Monte Carlo estimates of the gradient of Monte
Carlo objectives with respect to the parameter of the probability distribution.
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We consider a distribution pϕ(z) parameterized by ϕ ∈ Φ, and fθ(z) a function of
z parameterized by θ ∈ Θ, both defined on a probability space Z, this defines Monte
Carlo objective

F(θ, ϕ) := Epϕ(z) [fθ(z)] (2.12)

as a function of both parameters. In this section, we seek to estimate the gradient of
the stochastic objective 2.12 w.r.t. the parameter ϕ, defined here as:

η := ∇ϕF(θ, ϕ) . (2.13)

The gradient is a vector of size |ϕ|, where each dimension corresponds to the derivative
of F(θ, ϕ) w.r.t. the corresponding parameter dimension. In modern deep learning ap-
plications, both the probability space Z and the parameter space Φ can be composed
of a large number of dimensions, making the gradient of the integral Epϕ(z) [fθ(z)]
w.r.t. the parameter θ intractable.

Monte Carlo methods provide a solution to estimate the gradients by simulating
the objective function. Monte Carlo gradient estimators can be categorized into three
classes (Mohamed et al. 2019): (i) the pathwise estimator, (ii) the score-function
estimator and (iii) the measure-valued gradient estimator. In the following section,
we discuss the pathwise and score function estimators and refer to Mohamed et al.
2019 for a comprehensive review of gradient estimation using Monte Carlo methods.

2.1 Pathwise estimator
The pathwise estimator consists in exploiting the structure of the function fθ(x) to
provide an estimate of the gradient. Given a base distribution pϕ(z), if a deterministic
sampling path g(ϵ; ϕ) and a base distribution p(ϵ) can be found such that the sampling
processes z ∼ pϕ(z) and z = gϕ(ϵ), ϵ ∼ p(ϵ) are equivalent. Then, by the law of the
unconscious statistician (LOTUS) (Grimmett, Grimmett, and Stirzaker 2001), the
objective F(θ, ϕ) can be expressed as an expectation over the distribution p(ϵ):

F(θ, ϕ) = Ep(ϵ) [fθ(gϕ(ϵ))] . (2.14)

Thanks to this re-parameterization of the sampling path, the parameter ϕ is made
independent of the sampling distribution and can be pushed in the cost function:

∇ϕF(θ, ϕ) = Ep(ϵ) [∇ϕfθ(gϕ(ϵ))] . (2.15)

Equation 2.15 can be estimated via Monte Carlo; this defines the pathwise estimator:

η̄pathwise
K := 1

K

N∑
i=1

∇ϕfθ(gϕ(ϵi)), ϵ1, . . . , ϵK ∼ p(ϵ) . (2.16)

The estimator 2.16 can be evaluated using automatic differentiation packages, allow-
ing for end-to-end optimization of stochastic objectives. It has been popularized in
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the field of deep learning as the reparameterization trick (Kingma and Welling 2014a),
and as stochastic backpropagation (Rezende, Mohamed, and Wierstra 2014) and has
since then been widely adopted by the community. When applicable, the estimator
provides a low variance estimator in most settings thanks to the structural informa-
tion provided by the differentiation of the sampling path. Nonetheless, the estimator
cannot be directly applied to discrete distributions. In that case, we might turn to
other estimators, such as the score function estimator.

2.2 Score function estimator
In statistics, the score function is defined as the gradient of the log probability
∇ϕ log pϕ(z) w.r.t. the parameter ϕ. The score function estimator consists in uti-
lizing the identity ∇ϕ log pϕ(z) = ∇θpϕ(z)/pϕ(z) to express the gradient of objective
function as an expected value of the gradient ∇ϕ log pϕ(z) weighted by the value fθ(z):

∇ϕF(θ, ϕ) =∇ϕ

∫
z

pϕ(z)fθ(z)dz (2.17a)

=
∫

z
∇ϕpϕ(z)fθ(z)dz (2.17b)

=
∫

z
pϕ(z)∇ϕ log pϕ(z)fθ(z)dz (2.17c)

=Epϕ(z) [fθ(z)∇ϕ log pϕ(z)] . (2.17d)

Estimating Equation 2.17d via Monte Carlo yields the score function gradient estima-
tor Kleijnen and Rubinstein 1996, also known as the REINFORCE estimator (Williams
1992):

η̄reinforce
K := 1

K

N∑
i=1

fθ(z)∇ϕ log pϕ(zi), z1, . . . , zK ∼ pϕ(z) . (2.18)

The score function estimator is generally applicable, and doesn’t require the function
fθ to be differentiable, nor does it require pϕ(z) to be reparameterizable. This makes
REINFORCE a great candidate for optimizing black-box systems, stochastic control
flows, or discrete latent variable models. This estimator is also infamous for suffering
from high variance. Nonetheless, it is possible to reduce variance by coupling the
estimator with control variates (Section 2.4).

2.3 Assessing gradient estimators
Bias and variance Monte Carlo estimates of the gradient η = ∇ϕF(θ, ϕ) are
multivariate random variables and their distributions can be evaluated by studying
their moments: the expected value E [η̄K ], with associated bias ‖E [η̄K ] − η‖, and
the covariance Cov [η̄K ]. In practice, this is however often simpler and informative
enough to study the bias and variance of each parameter component separately.
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Unbiased estimators are often preferred to their biased counterparts because unbi-
asedness guarantees that increasing the number of samples will result in a more accu-
rate estimation of the true gradients. Two unbiased estimators have equal expected
values. In that case, studying the variance is sufficient to compare both estimators.

SNR Nonetheless, as explored in Chapter 8, it is sometimes necessary to trade
unbiasedness for lower-variance estimates. In that case, comparing biased estimators
requires further knowledge of the task. Ultimately evaluating the end performances
on the downstream task is the ideal solution, but intermediate gradient statistics
can still be helpful. The signal-to-noise ratio (SNR) (Rainforth et al. 2018) gauges
the quality of a gradient estimate by measuring the amount of noise relative to the
magnitude of the expected value (Rainforth et al. 2018). The SNR is defined for the
ith component of the parameter vector θi as

SNR [η̄K(i)] = |E [η̄K(i)] |√
Var [η̄K(i)]

. (2.19)

2.4 Control variates
The computation requirements grow linearly with the number of samples K. When
working under a constrained computational budget, reducing the variance of a gra-
dient estimator is key to improving learning. The variance of a K-samples gradient
estimator ηK can be reduce using a control variate β which value correlates with η
such that:

E [β] = 0 and Var [ηK − β] ≤ Var [ηK ] . (2.20)

Although variance control can be applied to pathwise estimator (Roeder, Wu,
and Duvenaud 2017; Tucker et al. 2019), variance control is more often utilized in
combination with the score function estimator because its structure can more easily be
exploited. The expected value of the gradient of the score function is zero, therefore
for a constant baseline c (e.g., c = E[fθ(z)]), we have:

Epϕ(z) [c · ∇ϕ log pϕ(z)] = c · Epϕ(z)

[
∇ϕpϕ(z)

pϕ(z)

]
= c · ∇ϕEpϕ(z) [1] = 0 . (2.21)

When estimating the estimator η̄reinforce
K (Equation 2.18) using K > 1, it is pos-

sible to recycle the set of samples z1:K := {z1, . . . zK} and their prefactor values
fθ(z1), . . . fθ(zK) in the design of baselines (Mnih and Rezende 2016). Indeed, given
independently drawn samples, the value of a function f̂θ(z−i), that takes the set of
samples z−i = z1:K\{zi} as argument, is independent of the variable z, and therefore
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independent of all functions of z. It follows that

Epϕ(z1:K)

[
f̂θ(z−i)∇ϕ log pϕ(zi)

]
= Epϕ(z1:K )

[
f̂θ(z−i)

] =0 (Equation 2.21)︷ ︸︸ ︷
Epϕ(z1:K) [∇ϕ log pϕ(zi)]

+ Covpϕ(z1:K )

[
f̂θ(z−i), ∇ϕ log pϕ(zi)

]
︸ ︷︷ ︸

=0 (independence of zi and z−i)
(2.22)

and therefore a multi-sample baseline of the following form has zero expectation:

β(z1:K) :=
K∑

i=1
f̂θ(z−i)∇ϕ log pϕ(zi), z1:K ∼ pϕ(z1:K) . (2.23)

3 Conclusion
We reviewed the basics of evaluating Monte Carlo objectives and their gradients.
Importance sampling is a method for evaluating stochastic objectives given samples
drawn from auxiliary distributions, which is especially useful when samples from the
target distribution cannot be obtained. We presented two solutions to estimating the
gradients of Monte Carlo objectives: the pathwise estimator, a low-variance gradient
estimator applicable to reparameterizable distributions and the score function esti-
mator, which is more widely applicable but suffers from high variance unless effective
control variates can be designed. In Chapter 7, we will present a novel control variate
for the score function estimator.

Monte Carlo methods offer an elegant framework to trade computation for better
estimation accuracy. Nonetheless, in the case of complex stochastic processes, com-
putation resources are constrained, and standard Monte Carlo estimates have high
variance. Importance sampling is a solution to this problem. Nonetheless identifying
an adequate proposal distribution is still required. This will be the topic of the next
chapter, in which we will discuss latent variable models and variational inference.
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CHAPTER 3
Variational Inference

In this chapter, we study the problem of inference in latent variable models. Latent
variables are unobserved variables and latent variable models defined a generative
process defining a directed path from the latent space to the observation space. In-
ference consists in identifying the reverse process: quantifying the properties of an
unobserved variable given an observed variable. Analytical solutions to this prob-
lem are generally intractable. Instead of solving learning and inference of graphical
models exactly,

“variational methods convert a complex problem into a simpler problem, where the
simpler problem is generally characterized by a decoupling of the degrees of freedom
in the original problem. This decoupling is achieved via an expansion of the problem
to include additional parameters, known as variational parameters, that must be fit
to the problem at hand.” — Jordan et al. 1999.

In the following sections, we begin with an introduction to latent variable models
before discussing the topic of variational inference. We review multiple variational
objectives, which all can be applied to learn latent variable models via maximum
likelihood estimation. We conclude with deriving gradient estimates of the variational
objectives using the Monte Carlo methods presented in Chapter 2.

1 Latent Variable Models
We consider an observable random variable x defined on a space X and an unobserved
random variable z defined on a latent space Z with prior distribution pθ(z). We define
the decoder of the generative model as a conditional distribution pθ(x | z). This
results in a latent variable generative model characterized by the joint distribution:

pθ(x, z) := pθ(x | z) pθ(z) . (3.1)

Although the variable z is not observed, prior knowledge about the target generative
process x ∼ pdata(x) can be encoded with an adequate choice of space Z, prior pθ(z)
and decoder pθ(z | x).

Marginal Likelihood The joint distribution describes a generative process con-
trolled by a parameter θ, that allows first sampling a latent representation and then
generating a corresponding observation. Even with a simple prior distribution pθ(z),
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the coupling described by the joint distribution pθ(x, z) results in modelling more com-
plex densities in the observation space X via marginalization of the latent variable
z ∈ Z. This corresponds to the marginal likelihood:

pθ(x) :=
∫

Z
pθ(x, z)dz =

∫
Z

pθ(z)pθ(x | z)dz . (3.2)

The marginal likelihood can be utilized to optimize the parameter θ via maximum
likelihood estimation. Marginalizing over the prior pθ(z) is often impossible. Nonethe-
less, we recognize in Equation 3.2 a Monte Carlo objective, for which solutions for
approximate integration in Chapter 2.

Approximate Inference Importance sampling (Section 1) can be applied to esti-
mate the marginal likelihood 3.2 using sample from a proposal distribution q(z). The
distribution minimizing the variance of an importance sampler is (Equation 2.6):

q⋆(z) := pθ(x | z)pθ(z)∫
Z pθ(x | z)pθ(z)dz

= pθ(z | x) . (3.3)

This corresponds to the posterior distribution pθ(z | x), which connects the generative
model and the marginal likelihood via Bayes’ rule (pθ(x | z)pθ(z) = pθ(z | x)pθ(x)).
Nonetheless, the posterior distribution depends on the marginal likelihood and thus
is itself intractable. Variational inference consists of augmenting the problem with
an additional parameter ϕ, dubbed variational parameter, which parameterizes an
approximate posterior qϕ(z | x). In this thesis, the approximate posterior is imple-
mented using deep neural networks and is therefore referred to as inference network.

In the following sections, we detail multiple variational objectives that can be
utilized to learn the inference network jointly with the generative model. In the
remaining Chapters, we will study these objectives and apply them to learn deep
latent variable models.

Alternative approaches, not studied in this thesis, exist and are viable alterna-
tives. They include: Monte Carlo estimation of the posterior such as the Expectation-
Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977), designing the
generative model using invertible transformations (flows, Dinh, Sohl-Dickstein, and
Bengio 2017) or constraining the approximate posterior to a simple and fixed distri-
bution (diffusion models, Ho, Jain, and Abbeel 2020).

2 Evidence Lower Bound
In variational inference, we seek an objective that allows for maximizing the marginal
likelihood 3.2 and aligning the approximate posterior qϕ(z | x) with the true posterior
pθ(z | x). We begin by introducing a statistical distance to measure the divergence
between two distributions.
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Shannon entropy The entropy, denoted H, was introduced by Shannon (1948)
to quantify the predictability information of a random process; in other words, its
information content. The Shannon entropy of a variable x with distribution p(x) is a
non-negative value defined as

H(p) := −
∑
x∈X

p(x) log p(x) . (3.4)

The Kullback-Leibler (KL) divergence, or relative entropy (Kullback and Leibler
1951), measures the difference in information content between two distributions. For
two distribution p(x) and q(x) both defined on X such that p(x) = 0 where q(x) = 0,
the relative entropy from p to q defined as

DKL(q ‖ p) = −
∑
x∈X

q(x) log p(x)
q(x)

. (3.5)

The KL divergence defines a valid statistical divergence: it is (i) non-negative:
DKL(q‖p) ≥ 0, (ii) additive: for two distributions q(x) = q1(x)q2(x) and p(x) =
p1(x)p2(x), DKL(q‖p) = DKL(q1‖p1) + DKL(q2‖p2), and (iii) is equal to zero if and
only if p = q.

Variational objective The optimal variational distribution qϕ(z | x) can be chosen
as the distribution with the variational parameter that minimizes the KL divergence:

DKL (qϕ(z | z) || pθ(z | x)) :=
∫

Z
qϕ(z | x) (log qϕ(z | x) − log pθ(z | x)) dz (3.6a)

= log pθ(x) − Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z | x)

]
. (3.6b)

Removing the non-negative divergence from Equation 3.6 yields a log-likelihood lower
bound. This is the evidence lower bound (ELBO), denoted L and defined as:

L(x) := Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z | x)

]
≤ log pθ(x) . (3.7)

The ELBO satisfies both of the learning requirements: it allows maximizing
the marginal likelihood (lower bound) and allows minimizing a divergence be-
tween the true posterior and the approximate posterior observing that ∇ϕL(x) =
−∇ϕDKL (qϕ(z | z) || pθ(z | x)). Furthermore, it can be decomposed into two terms,
which are insightful from an auto-encoding perspective:

L(x) = Eqϕ(z|x) [log pθ(x | z)]︸ ︷︷ ︸
(A) reconstruction

− DKL(qϕ(z | x) ‖ pθ(z))︸ ︷︷ ︸
(B) regularization

. (3.8)
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3 Importance-Weighted Bound
As a direct consequence of Equation 3.6, the ELBO aligns with the marginal likelihood
if and only if qϕ(z|x) = pθ(z|x) and this difference equals the value of the divergence
DKL (qϕ(z|z) || pθ(z|x)). In some cases, this divergence might be large and learning by
maximizing the variational bound might be ineffective (See Cremer, Li, and Duvenaud
2018 for a study on this topic).

Importance sampling In Section 1, we discussed that importance sampling pro-
vides unbiased estimates, using qϕ(z | x) as proposal distribution, the log marginal
likelihood can be expressed as an expectation over qϕ(z | x):

log pθ(x) = logEqϕ(z|x)

[
pθ(x, z)
qϕ(z | x)

]
. (3.9)

Because of the log function, a K-sample Monte Carlo estimate of Equation 3.9 is
generally biased (Jensen’s inequality), nonetheless, it converges to the log marginal
likelihood in the limit K → ∞, in contrast with the ELBO.

Figure 3.1: Beyond the ELBO:
tighter estimation of the marginal
likelihood using K > 1 Monte
Carlo samples using the impor-
tance weighted bound LK(x).

Tighter variational bound A K-sample
Monte Carlo estimate of Equation 3.9 defines the
importance-weighted bound (Burda, Grosse, and
Salakhutdinov 2016):

LK(x) := Eqϕ(z1:K |x)

[
log 1

K

K∑
i=1

wθ,ϕ(x, zi)

]
(3.10)

where z1:K := {z1, . . . , zK} is a set of Monte
Carlo samples drawn from qϕ(z | x) and with im-
portance weight wθ,ϕ(x, z) := pθ(x, z)/qϕ(z, x).
The importance-weighted bound non-decreasing
with K and remains a lower bound of the
marginal likelihood for all values K ≥ 1:

L(x) ≤ LK(x) ≤ LK+1(x) ≤ log pθ(x) . (3.11)

Therefore, using importance-weighted bound
guarantees estimating the marginal likelihood
more tightly as K → ∞, and corresponds to the
ELBO in K = 1 (see Figure 3.1).
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4 Variational Rényi Bound
Rényi entropy In Section 2, we introduced
Shannon entropy as a measure of the informa-
tion content inherent to a probability distribution.
Rényi (1961) generalized the notion of entropy to a
wider class of measures. Given a parameter α ≥ 0,
the Rényi entropy is defined as

Hα(p) := 1
1 − α

∑
x∈X

pα(x) (3.12)

for α 6= 1 and its definition is extended in α = 1 by
continuity as the Shannon entropy:

Hα=1(p) := lim
α→1

Hα(p) = H(p) . (3.13)

The Rényi entropy is a measure of information for
α > 0 but is constant for α = 0. In figure 3.2,
we illustrate the Rényi entropy for α ≥ 0 based on
Bernoulli distribution with parameter θ ∈ [0, 1].

Figure 3.2: Rényi entropy Hα

measured for a Bernoulli distri-
bution with parameter θ ∈ [0, 1].
Hα=1 corresponds to the Shan-
non entropy. Different values of
α lead to different uncertainty
quantification profiles.

Figure 3.3: Fitting a multi-modal distribution p(z) (in red) with a Gaussian model qϕ(z)
by minimizing the Rényi divergence Dα(qϕ‖p) for values of α > 0 (blue: α < 1 and green:
α>1). Using α → 0 leads to a mean seeking behaviour, α ≥ 1 leads to seeking the mode.

Rényi divergence Similarly to Shannon entropy (Equation 3.4), the Rényi entropy
can be applied to defined a statistical divergence, the Rényi divergence, defined as

Dα (q ‖ p) := 1
α − 1

log
∫

X
q(x)

(
p(x)
q(x)

)1−α

dx (3.14)

for α 6= 1 and extended by continuity in α = 1 where it corresponds to the KL
divergence (Equation 3.5). The Rényi divergence is a statistical divergence for α > 0
and wherever |Dα (q‖p) | < ∞. As illustrated in Figure 3.3, minimizing the Rényi
divergence between two distributions leads to different solutions depending on the
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choice of α. For α ≥ 1, minimizing the Rényi divergence leads to matching only the
mode of the distribution. For α → 0, it leads to covering the whole target distribution.

Rényi variational bound The evidence lower bound arises from attempting to
minimize the KL divergence from the true posterior to the approximate posterior
(Section 2). Another variational bound can be obtained using the Rényi divergence
Dα (qϕ(z | x)‖pθ(z | x)) instead of the KL divergence. The resulting Rényi variational
bound (RVB) is defined as (Li and Turner 2016):

Lα(x) := 1
1 − α

logEqϕ(z|x)

[
w1−α

θ,ϕ (x, z)
]

. (3.15)

for α 6= 1 and defined in α = 1 by continuity as Lα=1(x) := limα→1 Lα(x) = L(x),
where L(x) is the standard evidence lower bound (Equation 3.7). The RVB is a
continuous and non-decreasing function of α and coincides with the marginal log-
likelihood in α = 0. Summarizing the above information, the RVB connects the
ELBO and the marginal likelihood through the four following equations:

Lα=1(x) =L(x) Lα=0(x) = log pθ(x) (3.16a)
Lα≥0(x) ≤ log pθ(x) Lα≤0(x) ≥ log pθ(x) . (3.16b)

Importance weighted Rényi bound In general, the RVB has no closed-form
solution. a K-sample estimate of the RVB yields another bound, the importance-
weighted Rényi bound (IWRB), which is defined for α 6= 1 as:

LK
α (x) := 1

1 − α
Eqϕ(z1:K |x)

[
log 1

K

K∑
i=1

w1−α
θ,ϕ (x, zi)

]
(3.17)

Figure 3.4: The importance weighted
Rényi bound (IWRB) as a function of the
parameters α ∈ [0, 1] and K ≥ 1.

The definition of the IWR bound is ex-
tended in α = 1 by continuity with the
IW bound (Equation 3.10). The bound
satisfies the following properties:

• L(x) = LK=1
α ,

• limK→∞ LK
α (x) = Lα(x),

• non-decreasing in K for fixed α ≤ 1,
• non-increasing in K for fixed α ≥ 1,
• continuous and non-increasing in α

The IWRB is a useful tool to navigate be-
tween the ELBO and the log-likelihood by
controlling the value of K and α ∈ [0, 1],
we illustrate the corresponding 2D surface
in Figure 3.4).
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5 Gradient Estimation
In this section, we derive the gradients of the IWRB with respect to each parameter
(θ and ϕ) and present corresponding Monte Carlo estimators. The IWRB includes
the IWB as a special case (α = 0), but the gradients of the ELBO need to be derived
separately, as the IWRB is extended in α = 1 by continuity.

5.1 IWRB: parameter θ
The gradient of the IWRB with respect to θ can be expressed as:

∇θLK
α (x) = 1

1 − α
∇θEqϕ(z1:K |x)

[
log 1

K

K∑
i=1

w1−α
θ,ϕ (x, zi)

]
(3.18a)

= 1
1 − α

Eqϕ(z1:K |x)

[
∇θ log 1

K

K∑
i=1

w1−α
θ,ϕ (x, zi)

]
(3.18b)

= 1
1 − α

Eqϕ(z1:K |x)

[
∇θ

∑K
i=1 w1−α

θ,ϕ (x, zi)∑K
i=1 w1−α

θ,ϕ (x, zi)

]
(3.18c)

=Eqϕ(z1:K |x)

[
K∑

i=1
w̃1−α

θ,ϕ (x, zi)∇θ log pθ(x, zi)

]
(3.18d)

where in the last line we used the score function identity ∇ log pθ(x, z) = ∇θpθ(x,z)
pθ(x,z)

and concluded using the expression of the self-normalizing weights defined as:

w̃1−α
θ,ϕ (x, z) :=

w1−α
θ,ϕ (x, z)∑K

i′=1 w1−α
θ,ϕ (x, zi′)

. (3.19)

The gradient ∇θLK
α (x) is an expected value with respect to the approximate posterior.

We can be approximated using the following K-sample Monte Carlo estimator

η̄θ,N :=
K∑

i=1
w̃1−α

θ,ϕ (x, zi)∇θ log pθ(x, zi), z1:K ∼ qϕ(z1:K |x) . (3.20)

5.2 IWRB: parameter ϕ
Pathwise estimator In the case of a reparameterizable distribution qϕ(z|x), for
instance a Gaussian distribution with diagonal covariance matrix and location pa-
rameters conditioned on x, there is a base distribution p(ϵ) and a function gϕ such
that the process z ∼ qϕ(z|x) and ϵ ∼ p(ϵ), z = gϕ(z) are equivalent. Therefore, the
pathwise estimator (Section 2) can be applied to the gradient with respect to the



24 3 Variational Inference

variational parameter. The pathwise gradient of the IWRB is:

∇ϕLK
α (x) = 1

1 − α
∇ϕEp(ϵ1:K)

[
log 1

K

K∑
i=1

w1−α
θ,ϕ (x, gϕ(ϵi))

]
(3.21a)

= 1
1 − α

Ep(ϵ1:K )

[
∇ϕ log 1

K

K∑
i=1

w1−α
θ,ϕ (x, gϕ(ϵi))

]
(3.21b)

= 1
1 − α

Ep(ϵ1:K )

[
∇θ

∑K
i=1 w1−α

θ,ϕ (x, gϕ(ϵi))∑K
i=1 w1−α

θ,ϕ (x, gϕ(ϵi))

]
(3.21c)

= − Ep(ϵ1:K)

[
K∑

i=1
w̃1−α

θ,ϕ (x, zi)∇θ log qϕ(gϕ(ϵi) | x)

]
, (3.21d)

which can be estimated using the following Monte Carlo estimator:

η̄pathwise
ϕ,N := −

K∑
i=1

w̃1−α
θ,ϕ (x, zi)∇ϕ log qϕ(gϕ(ϵi) | x), ϵ1:K ∼ p(ϵ1:K) . (3.22)

Score function estimator The gradient of the IWRB w.r.t. the parameter ϕ of
the variational distribution is (see derivation in the box below):

∇ϕLK
α (x) = Eqϕ(z1:K |x)

[
K∑

i=1

(
log Ẑα(x | z1:K) − w̃1−α

θ,ϕ (x, zi)
)

∇ϕ log qϕ(zi | x)

]
(3.23)

where we introduced a marginal likelihood estimate, unbiased for α = 0, defined as

Ẑα(x | z1:K) :=

(
1
K

K∑
i=1

w1−α
θ,ϕ (x, zi)

)1/1−α

. (3.24)

A K-sample Monte Carlo estimate of Equation 3.23 yields a score function estimator
(see Section 2):

η̄reinforce
ϕ,K :=

K∑
i=1

(dα,i(x, z1:K) − cα(x, z−i)) ∇ϕ log qϕ(zi | x), z1:K ∼ qϕ(z | x) .

(3.25)
where

dα,i(x, z1:K) := log Ẑα(x | z1:K) − w̃1−α
θ,ϕ (x, zi) (3.26)

and where cα(x, z−i) is a baseline function defining a control variate:

βα(z1:K) :=
K∑

i=1
cα(x, z−i)∇ϕ log qϕ(zi | x), Eqϕ(z1:K |x) [βα(z1:K)] = 0 . (3.27)
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∇ϕLK
α (x) = 1

1 − α
∇ϕEqϕ(z1:K |x)

[
log 1

K

K∑
i=1

w1−α
θ,ϕ (x, zi)

]

=
∫

z

1
1 − α

log 1
K

K∑
i=1

w1−α
θ,ϕ (x, zi)∇ϕqϕ(z1:K | x)dz

+
∫

z

1
1 − α

qϕ(z1:K | x)∇ϕ log 1
K

K∑
i=1

w1−α
θ,ϕ (x, zi)dz

=Eqϕ(z1:K |x)
[
Ẑα(x | z1:K)∇ϕ log qϕ(z1:K | x)

]
+ Eqϕ(z1:K |x)

[
1

1 − α

K∑
i=1

∇ϕw1−α
θ,ϕ (x, zi)∑K

i′=1 w1−α
θ,ϕ (x, zi′ )

]

=Eqϕ(z1:K |x)

[
K∑

i=1

(
log Ẑα(x | z1:K) − w̃1−α

θ,ϕ (x, zi)
)

∇ϕ log qϕ(zi | x)

]

(Using the identity ∇ϕw1−α
θ,ϕ (x, zi) = (1 − α)w1−α

θ,ϕ (x, zi)∇ϕ log wθ,ϕ(x, zi).)

control variates Control variates can be designed in any way as long as the control
variate βα(z1:K) has zero expectation or a positive effect on the learning dynamics.
Previous research focused on designing baseline functions cα(x, z−i) that approximate
the prefactor term dα,i(x, z1:K) as accurately as possible.

In the variational inference literature, we find baselines designed using an auxiliary
neural network (NVIL, Mnih and Gregor 2014a), baselines that recycle the values of
wθ,ϕ(x, z1), . . . , wθ,ϕ(x, zK) (VIMCO, (Mnih and Rezende 2016)) and control variates
that exploit the gradient of the pathwise estimator (REBAR, Tucker et al. 2017;
RELAX, Grathwohl et al. 2018). In Chapter 7 (Paper B), we introduce OVIS, a new
estimator that extends VIMCO with a more optimal baseline.

5.3 ELBO

The gradient of the ELBO with respect to the parameter θ is:

∇θL(x) = Eqϕ(z1:K)

[
1
K

K∑
i=1

∇θ log wθ,ϕ(x, zi)

]
. (3.29)
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The gradient of the ELBO with respect to the parameter ϕ is:

∇ϕL(x) =∇ϕEqϕ(z|x) [log wθ,ϕ(x, z)] (3.30a)
=Eqϕ(z|x) [(log wθ,ϕ(x, z) − 1) ∇ϕ log qϕ(z | x)] (3.30b)
=Eqϕ(z|x) [log wθ,ϕ(x, z)∇ϕ log qϕ(z | x)] (3.30c)

=Eqϕ(z1:K |x)

[
1
K

K∑
i=1

log wθ,ϕ(x, zi)∇ϕ log qϕ(zi | x)

]
. (3.30d)

In the above, we use the identity Eqϕ(z|x) [∇ϕ log qϕ(z|x)] = 0. we spare the reader
from the expressions of the corresponding Monte Carlo estimates, as the process to
obtain them is similar to the one followed in the case of the IWRB.

6 Conclusion
We have introduced variational inference, a method that simplifies the learning prob-
lem by augmenting it with additional parameters. The additional parameter (vari-
ational parameter) parameterizes an approximate posterior qϕ(z | x), which can be
used to define lower bounds of the log marginal likelihood. The resulting variational
objectives enable joint training of the generative model and the approximate posterior.

We presented four variations of variational objectives: the evidence lower bound
(ELBO), the importance-weighted bound (IWB), the Rényi variational bound (RVB)
and its K-sample estimate, the importance-weighted Rényi bound (IWRB). Last, we
derived gradients of the ELBO and gradient estimators for the IWRB, which include
the IWB as a special case.

In Chapter 7, we will present a novel class of control variates for the score function
estimator of the IWB. In Chapter 8, we will discuss the use of the RVB to optimize
deep latent variable models more effectively.



CHAPTER 4
Deep Generative Models

In this chapter, we introduce the two main classes of text generative models studied
in the remaining chapters: the Variational Autoencoder and the language models,
considering both the autoregressive and masked variants.1 This chapter does not
cover other generative models such as flows (Dinh, Sohl-Dickstein, and Bengio 2017;
Kingma and Dhariwal 2018), energy-based models (Grathwohl et al. 2020; LeCun
et al. 2006) and diffusion models (Ho, Jain, and Abbeel 2020; Kingma, Salimans,
Poole, et al. 2021). In the following sections, we consider the problem of modelling
an observable variable x (e.g., image, text) with a distribution pθ(x). In all cases, we
assume the model to be parameterized by deep neural networks.2

1 Variational Autoencoders
For a tutorial on Variational Autoencoders, see
github.com/DeepLearningDTU/02456-deep-learning-with-PyTorch/

blob/master/7_Unsupervised
7.2-EXE-variational-autoencoder.ipynb

The Variational Autoencoder (VAE, Kingma and Welling 2014b; Rezende, Mo-
hamed, and Wierstra 2014) is a latent variable model parameterized by deep neural
networks. It consists of a generative model pθ(x, z) = pθ(z) pθ(z | x) and an infer-
ence network qϕ(z | x). The VAE is designed for variational inference (see chapter 3);
the inference network qϕ corresponds to an approximate posterior with variational
parameter ϕ. VAEs are trained by maximizing a variational bound (Section 2, 3 and
4).

Illustration Let’s consider the variable x representing binary data (e.g., MNIST).
We choose a d-dimensional diagonal Gaussian prior, parameterize the posterior with
neural networks gµ

ϕ and gσ
ϕ and parameterize the decoder with a neural network fθ,

1Although masked language models like BERT (Devlin et al. 2019) are not – strictly speaking –
generative models, we include them here to simplify the structure of the thesis. We refer the reader
to Hoogeboom et al. 2021 for a discussion on the interpretation of masked language models as an
instance of autoregressive diffusion model.

2See Goodfellow, Bengio, and Courville 2016 for an introduction to deep learning.

http://github.com/DeepLearningDTU/02456-deep-learning-with-PyTorch/blob/master/7_Unsupervised/7.2-EXE-variational-autoencoder.ipynb
http://github.com/DeepLearningDTU/02456-deep-learning-with-PyTorch/blob/master/7_Unsupervised/7.2-EXE-variational-autoencoder.ipynb
http://github.com/DeepLearningDTU/02456-deep-learning-with-PyTorch/blob/master/7_Unsupervised/7.2-EXE-variational-autoencoder.ipynb
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all with output dimension d. In that case, a simple VAE can be expressed as:

pθ(x | z) =Bernoulli(fθ(z)) (4.1a)
pθ(z) =N (0, I) (4.1b)

qϕ(z | x) =N (gµ
ϕ(x), exp gσ

ϕ(x)) . (4.1c)

where the variational distribution qϕ(z | x) can is reparameterizable because the sam-
pling process z ∼ N (gµ

ϕ(x), exp gσ
ϕ(x)) is equivalent to z = gµ

ϕ(x) + ϵ � exp gσ
ϕ(x), ϵ ∼

N (0, I)). The resulting VAE can be optimized using the evidence lower bound (Sec-
tion 2):

L(x) = Eqϕ(z|x) [log pθ(x | z)]︸ ︷︷ ︸
(A) reconstruction

− DKL(qϕ(z | x) ‖ pθ(z))︸ ︷︷ ︸
(B) regularization

. (4.2)

which can be optimized end-to-end using the pathwise estimator (Section 2.1). At
evaluation time, the marginal likelihood can be approximated using the importance-
weighted bound (Equation 3.10) with a sample budget as large as possible.

Designing VAEs VAEs come in many shapes and forms.3 We can identify three
design dimensions: the choice of the posterior distribution qϕ(z | x), the choice of the
prior distribution pθ(z), the choice of the observation model pθ(x | z). Each model can
be designed with an arbitrary factorization (e.g., autoregressive decoder, hierarchical
prior, autoregressive prior, autoregressive posterior) and various base distributions
can be employed within each of the three components (e.g., Gaussian distributions,
flows or categorical distributions). In Chapter 5, we present an example of VAE with
an autoregressive decoder and which prior factorizes as a deep hierarchy of latent
variables, each of which is modelled by a base Gaussian distribution.

Training objectives The variational objectives presented in Chapter 3 are all valid
candidates to train VAEs, although the evidence lower bound is more typical. Vari-
ational objectives are sometimes altered to circumvent optimization problems or to
promote learning useful latent representations.

Posterior collapse The evidence lower bound (Equation 4.2) is composed of (A)
a reconstruction term and (B) a regularization term that pushes the approximate
posterior to align with the prior. In practice, the regularization term might collapse
to zero, leading to the latent variables being unused. Posterior collapse can be avoided
by weakening the decoder (Bowman et al. 2016; Chen et al. 2017b) or by modifying
the training objective. Deterministic warm-up (Bowman et al. 2016; Sønderby et al.
2016) consists in altering the evidence lower bound with a parameter β:

Lβ(x) = Eqϕ(z|x) [log pθ(x | z)] − β · DKL(qϕ(z | x) ‖ pθ(z)) , (4.3)
3We recommend Kingma and Welling 2019 for a complete background on VAEs



2 Language Models 29

which can be increased from zero to one during early training such as to reduce the
effect of the regularizing term. Alternatively, the objective can be modified with an
amount of λ free bits (Kingma et al. 2016), which approximately corresponds to:

Lλ(x) = Eqϕ(z|x) [log pθ(x | z)] − max{λ, DKL(qϕ(z | x) ‖ pθ(z))} . (4.4)

Representation learning In some modelling scenarios, it is possible to learn la-
tent representations that are aligned with high-level features such as a class label.
Ideally, these features are compact and easily re-usable for downstream tasks. No-
tably, Higgins et al. 2017 showed that increasing the regularization term in Equation
4.3 by scaling the parameter β up can promote learning of disentangled representa-
tions. Nonetheless, such features are difficult to learn without additional supervision.
In practice, semi-supervised learning (Kingma et al. 2014) allows aligning the latent
representations with known features in a more predictable way.

2 Language Models
For a tutorial on language modelling, RNNs and Transformers, see
github.com/DeepLearningDTU/02456-deep-learning-with-PyTorch/

blob/master/5_Transformers/
5_1_EXE_deep_learning_with_transformers.ipynb

In this section, the variable x an arbitrary piece of text encoded at the character-
level, word-level, or sub-word level (Sennrich, Haddow, and Birch 2016; Song et al.
2021). After tokenization, the variable x decomposes into a sequence of T tokens
x1, . . . , xT . A language model corresponds to the joint distribution pθ(x). Although
simple language models can be defined using n-gram models, in this section, we discuss
those parameterized by deep neural networks.

Autoregressive language models Most of the autoregressive language models
adopt a left-to-right factorization of the tokens:

pθ(x) =
T∏

t=1
pθ(xt | x<t) , (4.5)

where x<t = x1, . . . , xt−1. Each transition model pθ(xt | x<t) is parameterized by a
neural network fθ such that:

pθ(xt | x<t) = Cat (xt | fθ(x<t)) . (4.6)

For instance, fθ can be implemented using a recurrent neural network such as an
LSTM (Hochreiter and Schmidhuber 1997) or using a Transformer (Vaswani et al.
2017).

http://github.com/DeepLearningDTU/02456-deep-learning-with-PyTorch/blob/master/5_Transformers/5_1_EXE_deep_learning_with_transformers.ipynb
http://github.com/DeepLearningDTU/02456-deep-learning-with-PyTorch/blob/master/5_Transformers/5_1_EXE_deep_learning_with_transformers.ipynb
http://github.com/DeepLearningDTU/02456-deep-learning-with-PyTorch/blob/master/5_Transformers/5_1_EXE_deep_learning_with_transformers.ipynb
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The above factorization can be extended to permutations of the indices 1, . . . , T ;
as long as the causal dependencies are enforced. In the case of a Transformer-based
model, the dependencies are enforced by masking the attention mechanism. Order-
agnostic language models can be obtained by sampling random orderings during train-
ing, as explored in Yang et al. 2019 and in Hoogeboom et al. 2021.

Masked language models Alternatively, other methods such as BERT (Devlin et
al. 2019) trade the strict autoregressive dependencies for a set of two self-supervised
objectives. The first objective corresponds to a masked language modelling task
characterized by the conditional:

pθ(xm | x−m) =
∏
j∈m

pθ(xj | x−m) , (4.7)

where m corresponds to the indices of the masked tokens to be predicted and −m
represents all the other indices. Masked language models are typically implemented
using masked self-attention. Similarly to the autoregressive language model, we can
express the conditional using a deep neural network fθ:

pθ(xj | x−m) = Cat (xj | fθ(x−m)) . (4.8)

The second task consists of predicting whether two sentences appear next to one
another in the training corpus. This promotes BERT not only to operate at the
token level but also to model the relationship between two sentences. We refer to the
original paper for a more complete description of the training algorithm (Devlin et al.
2019).

Large scale pre-training Both types of language models can be trained using large
amounts of unlabelled text data. Autoregressive language models such as GPT(Brown
et al. 2020a; Radford et al. 2018; Radford et al. 2019b) are train to maximize the
marginal likelihood pθ(x). Masked language models like BERT (Devlin et al. 2019)
are trained to maximize the conditional pθ(xm | x−m) and to solve the next sentence
prediction task. In both cases, the underlying neural network fθ learns to extract
syntactic and semantic dependencies from the context (x<t or x−m). These resulting
contextual representations, trained on large amounts of data, often align with reusable
language features and can be applied to solve downstream tasks.

3 Conclusion
In this chapter, we have briefly introduced the Variational Autoencoder and covered
the basics of language modelling. This concludes the part I of this thesis. In the
next Chapter, we will discuss how to combine variational autoencoders and language
models.



Part II

Deep Latent Variable Models for
Language Modelling





CHAPTER 5
Bidirectional-Inference

Variational Autoencoder
This chapter cites one of the contributions in this thesis:
Paper A: Maaløe et al. 2019 “BIVA: A Very Deep Hierarchy of Latent Variables for Gen-
erative Modeling”

x

d1 zTD
1zBU

1

d2 zTD
2zBU

2

z3

θ

Figure 5.1:
Generative

x

d̃1 zTD
1zBU

1

d̃2 zTD
2zBU

2

z3

ϕ

Figure 5.2:
BU inference

zTD
1

d2 zTD
2zBU

2

z3

θ

Figure 5.3:
TD inference

x

zTD
1zBU

1

zTD
2zBU

2

z3

θ

Figure 5.4:
Dependencies

Figure 5.5: A L = 3 layered BIVA with (a) the generative model, (b) bottom-up
(BU) inference path,(c) top-down (TD) inference path, and (d) variable dependency
of the generative models where dashed lines denote a skip-connection. Blue arrows
indicate that the deterministic parameters are shared within the generative model or
between the generative and inference model. The diamonds represent the outputs of
neural networks, the white circles indicate latent variables.

Autoregressive generative models parameterized by deep neural networks such as
recurrent neural networks, convolutional neural networks or Transformers excel at
modelling images (PixelCNN++, Salimans et al. 2017), text (XLNet, Yang et al.
2019) and audio (Sparse Transformer, Child et al. 2019). Nonetheless, controlling the
generative process or inferring such attributes in autoregressive models is challenging,
unless the training data is labelled with a set of known features (e.g., a class label
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describing the content of an image, or a conversation topic).
Generative models can be augmented with latent variables capturing global vari-

ation factors. Variational Autoencoders (VAE, Kingma and Welling 2014a) have
proven to be well adapted to the image domain. This is especially true for the deep
VAEs, which consist of stacking many layers of latent variables.1 However, in the lan-
guage domain, VAEs remain largely outperformed by LSTM or Transformer-based
language models in generation and representation learning tasks.

In this chapter, we introduce BIVA: the deep hierarchical VAE introduced in
Paper A. We include an overview of the architecture and discuss its application to
language modelling. We refer to Paper A for an in-depth description of the method
and a detailed review of the empirical results.

1 Architecture
BIVA (Bidirectional-Inference Variational Autoencoder) is a VAE which prior fac-
torizes as a top-down deep hierarchy of latent variables. The inference network is
decomposed into two parts: one that adopts a bottom-up factorization of the latent
variables and another that adopts the reverse order: a bottom-up factorization. See
Figure 5.5 for an illustration of the architecture.

Generative model The generative model of BIVA is identical to the one of a
standard hierarchical VAE with skip connections. Given an observed variable x and
a depth L, it is defined as:

pθ(x, z) := pθ(x | z) pθ(zL)
L−1∏
i=1

pθ(zi | z>i) , (5.1)

where each variable z1, . . . , zL corresponds to a level in the hierarchy. Each transi-
tion pθ(zi | z>i) is a Gaussian distribution parameterized by Gated ResNet blocks
composed of convolutional neural networks (CNNs) 2 with skip-connections letting
each layer of index i receive information from the above variables z>i = {zi+1, . . . zL}.
The top layer is a simple Gaussian distribution pθ(zL) = N (zL | 0, I).

Bidirectional inference network On the inference side of the model, each latent
variable zi in the hierarchy with position i < L is decomposed into two parts, one for
the top-down path and another for the bottom-up path:

zi = [zTD
i ; zBU

i ], i ∈ [1, L − 1] , (5.2)

1Read more about deep VAEs in Child 2021; Kingma et al. 2016; Maaløe et al. 2019; Sønderby
et al. 2016; Vahdat and Kautz 2020.

2The design of the Gated ResNet was inspired from Kingma et al. 2016



2 Image modelling 35

This factorization splits the hierarchy into two paths, which each factorize in opposite
directions: a bottom-up path (i.e., p(z) =

∏
i p(zi | z<i)) and a top-down path (i.e.

p(z) =
∏

i p(zi | z>i)). Both paths are parameterized by Gated ResNet blocks and
the top-down path shares parameter with the generative model, as originally done in
Sønderby et al. 2016. Combining both paths and conditioning the top-down on the
bottom-up variables, we obtain a flexible bi-directional hierarchical posterior:

qϕ(z | x) := qϕ(zL | x, zBU
<L)

L−1∏
i=1

qϕ(zBU
i | x, zBU

<i)︸ ︷︷ ︸
bottom-up

qϕ,θ(zTD
i | x, zTD

>i, zBU
<i, zBU

>i)︸ ︷︷ ︸
top-down

. (5.3)

Optimization and evaluation In Paper A, all models are trained using the path-
wise estimator (Section 2.1) applied to a modified evidence lower bound. The objective
is modified with freebits (Kingma et al. 2016) to mitigate posterior collapse.3

2 Image modelling
In Table 5.1, we report the test likelihood of BIVA on CIFAR-10 with an updated list
of baselines. Compared to the methods released prior to Paper A, BIVA performed
comparably with the powerful but cumbersome autoregressive models (PixelCNN++).
Looking at the methods published after Paper A, IAF-VAE and BIVA seem to have
initiated a trend of deepening hierarchies of latent variables; deeper VAEs (NVAE:
L=30, VD-VAE: L=45) were released soon after BIVA and were quickly followed by
diffusion models (DPPM: L=1k, VDM: 10k). In Paper A, we report numerous addi-
tional image modelling experiments, including semi-supervised learning and anomaly
detection.

3 Language modelling
In Paper A, we investigated whether BIVA could be applied to model 40-word sen-
tences gathered from the BookCorpus dataset (Zhu et al. 2015). Text VAEs (Bowman
et al. 2016; Semeniuta, Severyn, and Barth 2017) are designed with an LSTM lan-
guage model as decoder. Such models have been notoriously difficult to optimize due
to the decoder ignoring the latent variable, which is also known as the problem of
posterior collapse.4 Bowman et al. 2016 and Semeniuta, Severyn, and Barth 2017
bypassed this issue using strong regularization methods consisting of annealing the
KL term in the ELBO (deterministic warm-up, Bowman et al. 2016; Sønderby et al.
2016) and weakening the decoder (word dropout).

3i.e. DKL(qϕ(z | x) ‖ pθ(z)) collapsing to zero, see Section 1
4Read more about posterior collapse in Section 1.



36 5 Bidirectional-Inference Variational Autoencoder

Type Depth bits/dim
With autoregressive components
IAF-VAE Kingma et al. 2016 VAE 12 ≤ 3.12
VLAE Chen et al. 2017b VAE 1 ≤ 2.95
PixelRNN Oord, Kalchbrenner, and Kavukcuoglu 2016 AR – = 3.00
PixelCNN++ Salimans et al. 2017 AR – = 2.92
PixelSNAIL† Chen et al. 2018 AR – = 2.85
Sparse Transformer† Child et al. 2019 AR – = 2.80
Without autoregressive components
DiscreteVAE++ Vahdat et al. 2018 VAE 4 ≤ 3.38
GLOW Kingma and Dhariwal 2018 Flow – = 3.35
Flow++ Ho et al. 2019 Flow – = 3.08
BIVA Maaløe et al. 2019 VAE 15 ≤ 3.08
NVAE† Vahdat and Kautz 2020 VAE 30 ≤ 2.91
Very Deep VAE† Child 2021 VAE 45 ≤ 2.91
DDPM† Ho, Jain, and Abbeel 2020 Diff. 1k ≤ 3.70
VDM† Kingma, Salimans, Poole, et al. 2021 Diff. 10k ≤ 2.65
†Contemporary work or published after BIVA.

Table 5.1: Test log-likelihood on CIFAR-10 for BIVA and other deep generative models.
The likelihood is approximate using the importance-weighted bound with K = 1000. We
report the number of layers of latent variables when applicable (depth) as well as the type
of model (autoregressive, VAE, flow, diffusion). We split the table between models that use
autoregressive components (in the prior or in the decoder) and the others.

Latent variable language model BIVA is adapted to sequential data by replacing
the 2D convolutions in the Gated ResNets with 1D convolutions. As done in related
work, we augmented BIVA with an autoregressive conditional language model:

pθ(x | z) :=
T∏

t=1
pθ(xt | x<t, z) , (5.4)

where x is a sentence encoded at the word level into q sequence x1, . . . , xT and
pθ(xt | x<t, z) is parameterized by an LSTM (Hochreiter and Schmidhuber 1997).
We also experimented without LSTM decoder, in that case we define pθ(x | z) :=∏T

t=1 pθ(xt | z).

Key findings Table 5.2 reports the likelihood and latent variable usage measured
by the KL divergence DKL(qϕ(z | x)‖pθ(z)) of BIVA and the baseline models under
comparable parameter budgets and using the same regularization technique (freebits
+ fine-tuning without regularization). In terms of likelihood performances, BIVA
without autoregressive component is largely outperformed by the purely autoregres-
sive LSTM language model. Coupled with an autoregressive component, BIVA and
the other text VAEs bridge the gap with the LSTM baseline. BIVA performed com-
parably with the other text VAEs, although we report a higher usage of the latent
variables for BIVA, as measured by the KL divergence.
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Parameters − log pθ(x) KL
Results with autoregressive components
LSTM 15.0M = 41.49 −
LSTM-VAE 23.7M ≤ 42.41 5.13
Hybrid-VAE 23.7M ≤ 42.24 4.67
BIVA L=7 23.0M ≤ 42.34 10.15
Results without autoregressive components
Hybrid-VAE 15.0M ≤ 54.53 14.10
BIVA L=7 14.0M ≤ 54.13 15.33

Table 5.2: Language modelling with BIVA. We report the test likelihood (measured
with the ELBO) and the KL divergence DKL(qϕ(z | x) ‖ pθ(z)). BIVA achieves higher
KL divergences than the baseline models for a comparable likelihood, indicating a better
conditioning of the decoder on the latent variables. LSTM-VAE is presented in Bowman
et al. 2016. Hybrid VAE combines a CNN encoder with a CNN-LSTM decoder (Semeniuta,
Severyn, and Barth 2017).

4 Conclusion
We presented BIVA; an example of a deep Variational Autoencoder. We discussed
image modelling and text modelling experiments. BIVA excelled at modelling images,
performing comparably with powerful autoregressive models. However, in the text
domain, deep VAEs might not be sufficient, and it might not be possible to obtain
good generative performances without autoregressive components. Hybrid VAEs,
such as BIVA with an LSTM decoder, can learn to condition the text generative
process on latent variables but the latent variable doesn’t lead to improved likelihood
performances.

Although the text experiment was limited in its design due to the relatively small
scale of the model, the choice to impose a fixed-parameter budget, the use of a small
dataset and the evaluation objective (ELBO), this introductory text experiment hints
that latent variable models developed for the image models might not be so easily
applied to text modelling.

In the years following Paper A, Transformers have become an indispensable com-
ponent for text modelling. In the next chapter, we will present alternatives to the
standard hybrid VAE architecture (e.g., Bowman et al. 2016; Maaløe et al. 2019;
Semeniuta, Severyn, and Barth 2017) that allow harnessing the full power of Trans-
formers for latent variable language modelling.



38



CHAPTER 6
Language as a
Latent Variable

This chapter cites two of the contributions in this thesis:
Paper C: “Can large language models reason about medical questions?” (Liévin, Hother,
and Winther 2022)
Paper D: “Variational Open-Domain Question Answering” (Liévin et al. 2022b)

In this chapter, we present examples of latent variable models with structured
and interpretable latent spaces. Although latent variables are unobserved, knowledge
about the underlying generative process can be encoded in the design of the generative
process. Miao and Blunsom 2016 is an excellent example of a stochastic generative
model which relies on language as a latent variable. This generative process breaks
down into two steps (i) generating keywords (latent variable) and (ii) generating a
full-length text based on the keywords (observation).

In this thesis, we explored two types of models which latent variables are text data.
In Paper C, the prior is a large language model that generates possible step-by-step
solutions to a given written problem. In Paper D, the latent space is defined as a
large collection of documents (e.g., Wikipedia). In the following sections, we present
the architectures of the two models. Each method is discussed in depth in Chapters
10 and 9.

1 Latent Reasoning
This section gives an overview of the zero-shot reasoning language model from Paper
C. The model and the topic of prompt-based learning and zero-shot reasoning are
discussed in greater depth in Chapter 9 and Paper C.

Prompt-based learning Large language models such as GPT-3 (Brown et al.
2020a) are autoregressive left-to-right language models (i.e. pθ(x) =

∏
t pθ(xt | x<t))

consisting of a large number of parameters (175 billion parameters) and trained on
massive text datasets. Prompt-based learning involves designing text instructions,
dubbed prompts, that trigger pre-trained language models to generate predictions.
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Figure 6.1: Reasoning about a medical question using conditional language models pθ(z |
y). The question is taken from the MedMCQA dataset, the chain-of-thought (reasoning)
was generated using GPT-3. The text in blue is a text instruction appended to the question
(i.e. zero-shot chain-of-thought prompt; Kojima et al. 2022).

Given y a task input (e.g., question) and K the variable representing the additional
knowledge encoded into the prompt (e.g., task instructions, task examples or domain
knowledge), we denote f the function that combines the variables y and K into a
prompt denoted f(y,K), this is generally referred to as a prompt template.

Zero-shot reasoning Zero-shot chain-of-thought (CoT) prompting (Kojima et al.
2022) aims at generating a detailed step-by-step problem solutions, dubbed chain-of-
thoughts. The method is conceptually simple and boils down to prompting a large
language model with “Let’s think step by step”. See Figure 6.1 for an illustration.

Latent reasoning model Let’s consider a question-answering setting with ques-
tion y and answer x and an autoregressive language model pθ. Denoting ȳ = f1(y,K)
the zero-shot CoT prompt (Figure 6.1) augmenting the question y, the prior is

pθ(z | ȳ) =
|z|∏

t=1
pθ(zt | [ȳ ; z<t]) (6.1)

where [·; ·] denotes the concatenation operator, and z is defined on the text domain.
The decoding part of the generative model answers the question based on the question
y and the latent chain-of-thought z. It relies on an answer extraction prompt f2(u,K)
(e.g., “< u >, therefore, the answer is“). Combining the latent reasoning prior with
the answer extraction decoder, we obtain the zero-shot answering model is:

pθ

(
x, z | y,K

)
:= pθ

(
x | f2([ȳ ; z],K)

)︸ ︷︷ ︸
answering step

pθ

(
z | ȳ

)
,︸ ︷︷ ︸

reasoning step

. (6.2)

The resulting marginal answering model corresponds to exploring the many reasoning
paths that are likely under the large language model, which we express here as:

pθ (x | y,K) = Epθ(z|ȳ)

[
pθ (x | f2([ȳ ; z],K))

]
. (6.3)
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2 Latent Information Retrieval

Figure 6.2: Augmenting language models with large knowledge bases.

Paper D experiments with the task of open-domain question answering (ODQA), in
this section we detail the corresponding latent variable model and discuss its applica-
tion to language modelling (Figure 6.2).1

Latent knowledge space Given a question y with answer x and a collection of N
documents D = {z1, . . . , zN }, the ODQA task can be formulated as a latent variable
model (Lee, Chang, and Toutanova 2019) with marginal likelihood defined as:2

pθ(x | y,D) :=
∑
z∈D

pθ(x | z, y) pθ(z | y) , (6.4)

where pθ(x | z, y) machine reading comprehension model and where pθ(z | y) is a
document retriever, both implemented using pre-trained language models.

Retrieval-augmented language modelling ODQA can be seen as a special case
of latent variable masked language model. Given an input sequence x with masked
tokens xm and with remaining unmasked tokens x−m, a retrieval-augmented language
modelling (REALM, Guu et al. 2020) is defined as:

pθ(xm | x−m) =
∑
z∈D

pθ(xm | z, x−m) pθ(z | x−m) , (6.5)

which corresponds to the ODQA marginal likelihood (Equation 6.4) using y = x−m

and x = xm. Retrieval-augmentation can also be applied to autoregressive language

1Read more about open-domain question answering in Section 1.
2The notation of Paper D was adapted to make this chapter more consistent (q 7→y, a 7→x, d7→z).
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models, which was initially explored in Lewis et al. 2020 (RAG). This corresponds to
retrieving one document dt for each token xt with a model:

pθ(x) =
|x|∏
t=1

∑
zt∈D

pθ(xt | zt, x<t) pθ(zt | x<t) . (6.6)

3 Conclusion
We presented two examples of latent variable models with structured latent space. the
latent spaces are defined in the text domain; on one hand, the text is generated, and on
the other hand, the text is retrieved from a knowledge base. In both cases, the models
are parameterized with pre-trained language models which serve specific functions:
generating hypotheses, generating answers and retrieving information. This differs
from the classical text VAEs presented in Chapter 5, in which the latent spaces are
defined arbitrarily and mostly serve the purpose of defining a more flexible density
function.

In open-domain question answering, the documents containing relevant knowledge
are unknown. In the best scenario, optimizing the model via maximum likelihood
leads to learning to read, comprehend and retrieve documents at scale. In the case of
the latent reasoner, marginalizing the latent space leads to exploring many possible
hypotheses. Thus optimizing structured latent variable models might be useful be-
yond building better language models; it can be applied to integrate and explore large
knowledge spaces. In Chapter 10, we study the topic of ODQA in further detail and
show that the learned retrievers can be applied to real-world information retrieval
tasks.

The two models presented in this section rely on language as a latent variable.
Text data is essentially discrete and therefore optimizing the corresponding latent
variable models is challenging. This will be the theme of the next chapter, in which
we introduce a new family of gradient estimators for discrete latent variable models.
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CHAPTER 7
Optimal Variance of the
Score Function Estimator

This chapter cites one of the contributions in this thesis:
Paper B: Liévin et al. 2020 “Optimal Variance Control of the Score-Function Gradient
Estimator for Importance-Weighted Bounds”

Figure 7.1: Signal-to-noise ratio (SNR), directional SNR (DSNR) and variance of
gradients estimator applied to the importance-weighted bound for K = 1 . . . 1000.
We report the gradient statistics and visualise the distribution of gradient value for a
random parameter, for three approximations of OVIS and two baselines: VIMCO and
the pathwise gradient estimator. OVIS achieves lower variance than the two baseline
estimators, resulting in an SNR that grows at a rate

√
K whereas the SNR of the

baselines decreases at a rate 1/
√

K.

In this section, we study the variational inference for discrete latent variable mod-
els. This chapter begins with a background section, we motivate the use of unbiased
estimators and discuss related methods. In Section 2, we introduce OVIS1, a score
function estimator with a more optimal baseline. We conclude this chapter with
experimental results.

1OVIS: Optimal Variance – Importance Sampling
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1 Background
Categorical distributions are not reparameterizable and therefore the low-variance
pathwise gradient estimator (see Section 2.1) is not directly applicable. In Paper B,
Appendix F, we review the gradient alternatives of gradient estimators for variational
inference with discrete variables (VIMCO, RWS, REBAR, RELAX, TVO).

In this section, we first discuss some of the challenges intrinsic to training dis-
crete latent variable models using continuous relaxations. Second, we introduce the
VIMCO and RWS gradient estimators, which are directly related to our method;
OVIS. Last we conclude the background section with a known defect of importance
weighted bound estimators. We recommend expert readers to jump to Section 2
directly.

1.1 Continuous relaxations
Continuous relaxations of discrete variables such as the Gumbel-Softmax/Concrete
distribution (Jang, Gu, and Poole 2017; Maddison, Mnih, and Teh 2017) allow ap-
proximating discrete distributions with a reparameterizable continuous one. Given
a categorical distribution with probabilities Π = [π1, . . . , πN ], the sampling process
z ∼ Cat(Π) is equivalent to the following process (Gumbel-Max trick):

z = one_hot
(

arg max
i

[gi + log πi]
)

, g1, . . . , gN ∼ Gumbel(0, 1) (7.1)

The Concrete/Gumbel-Softmax relaxation consists in relaxing arg max operator used
in the Gumbel-Max sampling process. Relaxing Equation 7.1 yields a transformation
of the Gumbel noise and the class probabilities into an N -dimensional continuous
variable with each component i ∈ [1, N ] defined as:

z̃i = exp ((log πi + gi) /τ)∑N
i=1 exp ((log πi + gi) /τ)

, (7.2)

where τ > 0 is a temperature parameter controlling the smoothness of the relaxation.
This sampling process defines a valid continuous and reparametrizable probability
distribution pτ (z̃) (see Jang, Gu, and Poole 2017; Maddison, Mnih, and Teh 2017 for
more details). Furthermore, the continuous distribution pτ (z̃) converges to Cat(Π)
for τ → 0 and the continuous variable z̃ becomes sparser as τ is decreased, converging
to a one-hot encoded value.

Continuous relaxations are effective for training relative simple deep generative
models such as the VQ-VAE (Oord, Vinyals, and Kavukcuoglu 2017 with a flat prior).
Read Sønderby, Poole, and Mnih 2017 for experimental results.

Relaxation bias In the workshop paper Liévin et al. 2022a, we explored training
of more complex discrete VAEs. We found that problems are likely to arise when
increasing the depth of the neural networks that parameterize the model. Using a
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relaxed approximate posterior qτ
ϕ(z̃ | x) with relaxed variable z̃ and temperature

τ > 0 instead of a true categorical posterior qϕ(z | x) results in evaluating the relaxed
ELBO Lτ (x; θ, ϕ) instead of the ELBO L(x; θ, ϕ) (see Section 2). The error induced
by using the relaxed objective instead of the correct is quantified by the relaxation
bias:

δτ (x; θ, ϕ) := |Lτ (x; θ, ϕ) − L(x; θ, ϕ)| (7.3)

In Liévin et al. 2022a, we showed that, for a one layer VAE, the relaxation bias
is upper bounded by a function of the Lipschitz constant κ(θ, ϕ) of the function
log pθ(x, z) − log qϕ(z | x) and the expected difference between the relaxed variable z̃
and its discretized counterpart H(z̃):

δτ (x; θ, ϕ) ≤ κ(θ, ϕ) Eqτ
ϕ

(z̃|x) [‖z̃ − H(z̃))‖2] . (7.4)

As a direct consequence of the above inequality is that evaluating discrete VAEs
using continuous relaxations can results in an arbitrary large error unless the neural
networks parameterizing the model are designed such that their Lipschitz constant
remains small. This theoretical investigation, as well as the empirical observation that
relaxed discrete latent variable models are difficult to train, motivate the research
relaxation-free methods, discussed in the next sections.

1.2 Mutli-sample baselines for the score function estimator
we begin with recalling the importance-weighted bound (Section 3) and the score
function estimator (Section 5) before introducing the VIMCO (Variational inference
for Monte Carlo objectives) estimator.

Importance-weighted bound Given a generative model pθ(x, z), an approximate
posterior qϕ(z | x) and weights wθ,ϕ(x, z) := pθ(x, z)/qϕ(z | x), the importance-
weighted bound (IWB) is defined for K samples as:

LK(x) := Eqϕ(z1:K )

[
log 1

K

K∑
i=1

wθ,ϕ(x, zi)

]
. (7.5)

Score function estimator with baseline In section 5, we derived estimators for
both the parameter θ of the generative model (Equation 3.20 with α = 0) and for
the variational parameter ϕ. In this section, we focus on the score function gradient
estimator, which corresponds to Equation 3.25 with α = 0:

η̄reinforce
ϕ,K :=

K∑
i=1

(
di(x, z1:K) − c(x, z−i)

)
∇ϕ log qϕ(zi | x), z1:K ∼ qϕ(z | x) (7.6)
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where

di(x, z1:K) := log Ẑ(x | z1:K) − w̃θ,ϕ(x, zi) (7.7a)

Ẑ(x | z1:K) := 1
K

K∑
i=1

wθ,ϕ(x, zi) (7.7b)

The baseline c is chosen to minimize the variance of the gradient estimator and must
satisfy E [c(x, z−i)∇ϕ log qϕ(zi | x)] = 0. See Section 5 for more details.

VIMCO Mnih and Rezende 2016 observed that the function fθ,ϕ(x, zi) depends
on two components, an unbounded term log Ẑ(x | z1:K) and a self-normalized term
w̃θ,ϕ(x, zi) ∈ [0, 1]. Ẑ(x | z1:K) is a K-samples Monte Carlo estimate of the marginal
likelihood denoted Z, which can also be estimated using the set of K − 1 samples
z−i ⊂ z1:K .

The arithmetic version of the VIMCO estimator is a score function estimator
(Equation7.6) with baseline defined as:

c(x, z−i) := log Ẑ(x | x−i) = log 1
K − 1

K∑
j=1
j 6=i

wθ,ϕ(x, zj), (7.8)

the other version (geometric average) uses a slightly different baseline (see the original
paper).

VIMCO is computationally efficient because the values of the weights wθ,ϕ(x, z1),
. . . , wθ,ϕ(z, zK) are computed one time and recycled to control each score component
fθ,ϕ(x, zi). VIMCO often deliver low variance gradient estimation because c(x, z−i) is
structurally similar to fθ,ϕ(x, zi). Nonetheless, although the VIMCO baseline allows
controlling the dominating component of the gradient, the other component remains
uncontrolled. Indeed, the full gradient of VIMCO (arithmetic) is expressed as:

η̄VIMCO
ϕ,K :=

K∑
i=1

(
log Ẑ(x | z1:K) − log Ẑ(x | z−i)︸ ︷︷ ︸

controlled

− w̃θ,ϕ(x, zi)︸ ︷︷ ︸
uncontrolled

)
∇ϕ log qϕ(zi | x) .

(7.9)
In Paper B, discussed in Section 2, we sough for the baseline that minimizes

the variance of the score function estimator (Equation 7.6), without omitting the
uncontrolled gradient component −

∑K
i=1 w̃θ,ϕ(x, zi)∇ϕ log qϕ(zi | x).

1.3 Reweighted Wake-Sleep
The Reweighted Wake-Sleep (RWS, Bornschein and Bengio 2015) is an importance-
weighted re-interpretation of the original Wake-Sleep algorithm (Hinton et al. 1995)
(See Paper B for details). The algorithm translates to optimizing the generative pa-
rameter θ and the variational parameter ϕ are optimized for different objectives. The
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parameter θ is optimized by differentiating and maximizing the importance-weighted
bound LK(x) (Equation 7.5). The parameter ϕ is optimized such as to maximize the
KL divergence DKL (pθ(z | x) ‖ qϕ(z | x)) in the wake or sleep setting. Considering
the wake phase only2, the RWS gradient estimator for the variational parameter is
defined as:3

η̄RWS
ϕ,K :=

K∑
i=1

w̃θ,ϕ(x, zi)∇ϕ log qϕ(zi | x), z1:K ∼ qϕ(z | x) (7.10)

The RWS estimator has proven to be a powerful tool for variational inference with
discrete latent variables and outperformed VIMCO on many tasks (Le et al. 2019).

1.4 Signal-to-noise ratio and importance-weighted bounds

Table 7.1: Asymptotic signal-to-noise ratio (SNR) of the unbiased importance-
weighted gradient estimators. We indicate whether the estimator requires the varia-
tional distribution to be reparameterizable.

Parameter Estimator Requires reparam. SNR

θ Standard Monte Carlo –
√

K

ϕ Pathwise Burda, Grosse, and Salakhutdinov 2016 3 1/
√

K

ϕ STL Roeder, Wu, and Duvenaud 2017 3
√

K

ϕ DReG Tucker et al. 2019 3
√

K

ϕ VIMCO Mnih and Rezende 2016 7 1/
√

K

ϕ OVIS Liévin et al. 2020 7
√

K

Rainforth et al. 2018 showed that, in the case of reparametrizable variational
distributions, the pathwise gradient estimator of the importance weighted bound
(Equation 3.22 with α = 0) w.r.t. the parameter ϕ is essentially flawed. A study
of the asymptotic signal-to-noise ratio (SNR) showed that, as the budget of Monte
Carlo samples K increases, the pathwise estimator of the gradient w.r.t. θ improves
whereas the gradient w.r.t. ϕ worsens. In Table, we report the asymptotic signal-to-
noise ratio (SNR) for multiple estimators, including our estimator; OVIS, presented
in the following section.

2Experiments from Le et al. 2019 suggest that the wake phase is generally more effective.
3To be consistent with the gradient of the ELBO, we report here the gradient of

−DKL
(

pθ(z | x) ‖ qϕ(z | x)
)

. Learning is assumed to be performed via stochastic gradient ascent.
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2 OVIS
In this section, we will revisit the OVIS gradient estimators. We invite the readers
to skip the presentation of the main theoretical results and instead use this updated
version. Nonetheless, this section still refers to Paper B for the derivations.

The presentation of OVIS is decomposed as followed: (i) we show that a good
asymptotic SNR is achievable for the score function estimator, (ii) we present an
optimal but intractable optimal baseline for the score function estimator and (iii) we
derive two classes of approximations of the optimal – but intractable – baseline.

2.1 Optimal asymptotic SNR
Similarly to Rainforth et al. 2018, in which the focus was on the pathwise estimator
of the IW bound, we derived the asymptotic behavior of the score function estimator
score (η̄reinforce

ϕ,K , Equation 7.6) as K → ∞ assuming an optimal baseline.

Decomposition of di(x, z1:K) In Section 2.4, we discussed that a control variate
c(x, z−i) should not introduce dependencies on the sample zi and therefore only
depend on the set z−i. Thus, we introduce a decomposition of di into two parts:4

di(x, z1:K) = f(x, zi) + f(x, z−i) . (7.11)

Taylor expansion Following the methodology of Rainforth et al. 2018, assum-
ing that the importance weights have finite variance, i.e. Var[wθ,ϕ(x, z)] < ∞,
we expand log Ẑ(z | x1:K) as a Taylor series of the variable Ẑ(x | z1:K) around
Z(x) := pθ(x) .5 By injecting the resulting Taylor expansion in di(x, z1:K) :=
log Ẑ(x | z1:K) − w̃θ,ϕ(x, zi), we can identify terms that depend on the weight
wθ,ϕ(x, zi) and terms that depend on the other weights {wθ,ϕ(z, zj)}j 6=i and con-
sequently express the terms f(x, zi) and f(x, z−i) (Equation 7.11).

Asymptotic baseline For this analysis, we choose set the baseline to c∞(x, z−i) :=
f(x, z−i), that way we ensure the baseline to be independent of zi (condition for the
control variate to have zero expectation). Using the results of the Taylor expansion
(Appendix B of Paper B), we get:

c∞ := log Z(x) − 3
2 + 2

KZ(x)
∑
j 6=i

wθ,ϕ(x, zj) − 1
2K2Z2(x)

(∑
j 6=i

wθ,ϕ(x, zj)

)2

. (7.12)

4The functions f(x, zi) and f(x, z−i) are unknown but assumed to exist.
5Ẑ(x | z1:K) −−−−→

K→∞
Z(x)
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Optimal SNR Although c∞ is intractable because of its dependencies on the
marginal likelihood Z(x), the expression is sufficient to derive the optimal asymp-
totic signal-to-noise ratio. We define the optimal score function estimator (Equation
7.6) as the one using the optimal asymptotic baseline (Equation 7.12):

µ̄∞
ϕ,K :=

K∑
i=1

(
di(x, z1:K) − c∞(x, z−i)

)
∇ϕ log qϕ(zi | x) . (7.13)

The variance, gradient and SNR of this estimator is (Appendix C of Paper B):

E[µ̄∞
ϕ,K ] = O(K−1) (7.14a)

Var[µ̄∞
ϕ,K ] = O(K−3) (7.14b)

SNR[µ̄∞
ϕ,K ] = O(

√
K) . (7.14c)

Whereas Rainforth et al. 2018 predicted that the SNR of a pathwise estimator de-
creases at a rate of 1/

√
K, our result shows that it is theoretically possible to obtain an

SNR that increases at a rate of
√

K using the score function estimator, and therefore
without relying on reparameterizable variational distributions.

2.2 Optimal control variate
The baseline c∞(x, z−i) := f(x, z−i) was good enough to show that the score function
estimator is not bound to worsen when K is increased. In this section, we report
the result of the derivation of the optimal baseline, taking both parts f(x, zi) and
f(x, z−i) into account. In Paper B, Section 4, we derive the baseline copt

i (x, z1:K)6

that minimizes the trace of the covariance of the score function estimator 7.13 based
on the decomposition di(x, z1:K) = f(x, zi) + f(x, z−i). At this step, we are not
concerned about the bias of the estimator, were are interest in the analytical solution
of the problem and let copt

i depend on all samples z1:K . Setting h(z) = ∇ϕ log qϕ(z |
x), we showed that:

copt
i (x, z1:K) := arg min

ci

tr
(

Cov
[
η̄reinforce

ϕ,K (ci)
])

(7.15)

= arg min
ci

tr
(

Cov
[ K∑

i=1

(
f(x, zi) + f(x, z−i) − ci(x, z1:K)

)
h(zi)

])
=f(x, z−i) +

K∑
j=1

Eqϕ(z′|x)
[
f(x, zj) h(z′)T h(zi)

]
Eqϕ(z′|x) [‖h(z′)‖2]

. (7.16)

2.3 Approximations to the optimal control variate
Evaluating the optimal baseline copt

i (x, z1:K) (Equation 7.16) requires marginal-
izing over qϕ(z | x) and the corresponding control variate β(x, z1:K) =

6We add the subscript i to keep track of the index of the gradient component being stabilized.



52 7 Optimal Variance of the Score Function Estimator

∑
i copt

i (x, z1:K)h(zi) is not guaranteed to have zero expectation because copt
i (x, z1:K)

depends on zi. In this section, we introduce two classes of tractable approximations.

Monte Carlo simulation

In Paper B, Section 4, we show that given a parameter ϕ of large dimension, we can
simplify Equation 7.16 to:7

copt
i (x, z1:K) ≈f(x, z−i) + Eqϕ(z′

i
|x) [f(x, z′

i)] (7.17a)
=Eqϕ(z′

i
|x) [f(x, z−i) + f(x, z′

i)] (7.17b)
=Eqϕ(z′

i
|x) [d1(x, [z′, z−i])] , (7.17c)

where the transition from the first line to the second is allowed because the variable
z′

i is drawn independently of the set of samples z−i.
Using a set of S auxiliary samples allows us to define a Monte-Carlo estimate of

the optimal baseline which resulting control variate has zero expectation:

cMC(x, z−i) := 1
S

S∑
s=1

d1(x, [z(s), z−i]) z(1), . . . , z(S) ∼ qϕ(z | x) . (7.18)

High and low effective sample sizes

The effective sample size (ESS), denoted neff and introduced in Section 1.2, measures
the quality of an importance sampling estimate. It roughly translates to the num-
ber of samples among z1, . . . , zK that are effectively used in the estimation of the
target quantity. It is directly related to the entropy of the distribution of weights
w̃θ,ϕ(x, z1, . . . , w̃θ,ϕ(x, zK)).

In paper B, Appendix D, we derived approximations to the optimal baseline in
the ESS limits corresponding to neff � 1 and neff ≈ 1. We report the results below.

High ESS In the limit neff � 1, a large number of weights have comparable values.
Using a Taylor expansion of log Ẑ(x | z1:K) around 1

K

∑
j 6=i wθ,ϕ(x, zj), the optimal

baseline simplifies to:

cneff�1(x, z−i) := log Ẑ(x | z−i) + log(1 − 1
K

) . (7.19)

For large values of K, the term log(1 − 1
K ) simplifies to − 1

K . Whereas the VIMCO
baseline (Equation 7.8) controlled the term Ẑ(x | z1:K) with an estimate Ẑ(x |
z−i) and left the term −w̃θ,ϕ(z, zi) uncontrolled, the baseline cneff�1(x, z−i) extends
VIMCO with an extra term − 1

K . This term corresponds to the value of the weights
7The function d(x, [z′, z−i]) outputs a vector of the same size as the input [z′, z−i]. Thus,

d1(x, [z′, z−i]) corresponds to the output related to the first sample: z′.
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−w̃θ,ϕ(z, zi), which are roughly uniformly distributed in that setting. cneff�1(x, z−i)
is independent of zi and therefore the resulting control variate has zero expectation;
the gradient estimator is unbiased.

Low ESS In the limit neff ≈ 1, only one weight dominate with a value of
approximately one and the other weights are approximately zero. Let’s denote
⋆ = arg maxj∈[1,K] wθ,ϕ(x, zj) the index of the dominating weight. In this limit,
the two terms of the prefactor di(z, z1:K) can be approximated with:

log Ẑ(x | z1:K) ≈ log wθ,ϕ(x, z⋆)
K

and w̃θ,ϕ(x, zi) ≈ 1[i = ⋆] . (7.20)

In Paper B, Appendix D, we show that in this ESS limit, the optimal baseline can
be chosen as:

cneff≈1
i (x, z1:K) := log Ẑ(x | z−i) − w̃θ,ϕ(x, zi) . (7.21)

The corresponding control variate has zero expectation when neff = 1 because

E

[
K∑

i=1
w̃θ,ϕ(x, zi)h(zi)

]
= E

[
K∑

i=1
1[i = ⋆]h(zi)

]
= E [h(z⋆)] = 0 .

when neff > 1, the control variate has a non-zero expectation and the resulting esti-
mator is biased. In the next section, we investigate the nature of this bias.

2.4 OVIS for low ESS, RWS and STL
In the previous section, we have shown that for low ESS, using the optimal baseline
(cneff≈1

i (x, z1:K) Equation 7.21) results in a biased score function estimator. The
corresponding score function estimator can be decomposed using two of the gradient
estimators introduced in Section 1:

η̄neff ≈1
ϕ,K =

K∑
i=1

(
log Ẑ(x|z1:K) − log Ẑ(x|z−i) − w̃θ,ϕ(x, zi)

)
h(zi)︸ ︷︷ ︸

VIMCO (Equation 7.9)

+
K∑

i=1

w̃θ,ϕ(x, zi)h(zi)︸ ︷︷ ︸
RWS (Equation 7.10)

.

(7.22)
Therefore, the bias of the OVIS estimator for low ESS corresponds to the gradi-

ent of the RWS objective, which itself corresponds to minimizing the divergence
DKL (pθ(z | x) ‖ qϕ(z | x)).

Interestingly, the bias of this gradient estimator is identical to the biased of the
STL (Sticking The Landing, Roeder, Wu, and Duvenaud 2017) estimator.8 Indeed,
we have:

η̄neff≈1
ϕ,K =η̄VIMCO

ϕ,K + η̄RWS
ϕ,K (7.23a)

η̄STL
ϕ,K =η̄pathwise

ϕ,K + η̄RWS
ϕ,K (7.23b)

8We derive the STL estimator in Section 5
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where η̄pathwise
ϕ,K is the pathwise gradient estimator applied to the importance weighted

bound (Equation 3.22). Furthermore, because VIMCO and the pathwise estimators
are unbiased, it follows that

E
[
η̄neff≈1

ϕ,K

]
= E

[
η̄STL

ϕ,K

]
. (7.24)

Although the design OVIS for low ESS (Equation 7.21) is arbitrary for neff > 1,
given that the baseline is only defined in neff → 1, the link VIMCO, RWS and STL let
us be more confident when applying this estimator to train deep generative models,
where low ESS are often observed but remain superior to one.

3 Empirical Validation
We have studied the score function estimator and its optimal control variate theoreti-
cally. In Paper B, we confirmed our results empirically by replicating three landmark
experiments of the literature. We showed that OVIS yields better SNR empirically,
that OVIS learns better inference networks and that OVIS outperforms VIMCO.

3.1 Empirical SNR ∼
√

K

We replicated the small Gaussian model from Rainforth et al. 2018 that was utilized
to showcase that “Tighter Variational Bounds are Not Necessarily Better.” In Figure
7.1, we report the SNR of the unbiased OVIS estimators (MC and neff � 1) along
with baselines and confirm our theoretical findings.

3.2 Gaussian mixture model

Figure 7.2: Training a simple Gaussian Mixture Model. OVIS estimators learn
more optimal approximate posteriors (left) and yield higher SNR (right) than RWS,
VIMCO and the TVO. The middle plot shows the difference between the learn prior
parameters and the prior of the true generative process.

We replicated and trained the Gaussian model from Le et al. 2019 that was used
to showcase that VIMCO learns poor approximate posteriors whereas RWS learns
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approximate posteriors that match the true posterior. Figure 7.2 shows that all
OVIS estimators yield higher SNR and learn more optimal approximate posteriors
(inference networks) than the RWS, VIMCO and TVO estimators.

3.3 Sigmoid Belief Network

Figure 7.3: Training a Sigmoid Belief Network using OVIS (MC and ESS approxi-
mations) and VIMCO on Binarized MNIST (Salakhutdinov and Murray 2008). The
marginal likelihood is approximated using 5000 Monte Carlo samples. OVIS approx-
imation overall outperform VIMCO. The OVIS estimator for low ESS outperforms
the other estimators for K ≥ 10.

We replicated the Sigmoid Belief Network and experimental protocol from Mnih
and Gregor 2014b; Mnih and Rezende 2016. In Figure 7.3, we report the training
curves. We observed that all OVIS estimators outperform VIMCO, which confirms
that using a more optimal control variate leads to better performances. Lastly, the
OVIS estimator for low ESS outperformed VIMCO and the other OVIS estimator for
K ≥ 10.

4 Conclusion
OVIS is a novel control variate that provides unprecedented variance reduction of
the score function estimator. The new variance reduction technique overcomes some
of the flows of Monte Carlo estimators for the importance weighted bound, with a
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learning signal that increases as the number of Monte Carlo samples is increased and
without requiring the variational distribution to be reparameterizable. Two classes
of estimators were introduced, which should be chosen based on the application con-
straints (computational budget, ESS).

Our results allow us to recommend OVIS for the training of deep latent variable
models such Sigmoid Belief Networks. In that setting, the computational budget
is often limited and the Monte Carlo OVIS estimator cannot be applied. Instead,
the class of sample-free approximations for low and high ESS will be used. Large
and complex deep generative models are often found to suffer from a low ESS and
therefore the OVIS estimator for low ESS (Equation 7.21) will be generally prefered.

Limitations In Paper B, we present additional experiments, including a compari-
son with the Thermodynamic Variational Objective (TVO, Masrani, Le, and Wood
2019) estimator. Although in this section, the empirical results were favourable to
OVIS, OVIS estimators applied to the importance-weighted bound don’t necessarily
outperform the TVO.

When training deep generative models, the ESS is often measured close to one.
Based on the definition of the ESS, this indicates that the importance sampling
estimate Ẑ(x | z1:K) has high variance.9 In the limit neff ≈ 1, given ⋆ the index of
the dominating weight, OVIS for low ESS (Section 2.3) is approximately equal to

η̄neff≈1
ϕ,K ≈

(
log wθ,ϕ(x, z⋆)

K
− log Ẑ(x|z−⋆)

)
h(zi) (7.25)

where the difference log wθ,ϕ(x,z⋆)
K −log Ẑ(x|z−⋆) can be considerable and of arbitrarily

large variance. Thus OVIS for low ESS would inevitably have high variance as well.
Nonetheless, this issue is not specific to the OVIS estimators, and is likely to apply

to the importance-weighted bound in general. A low ESS means that the importance
sampling estimate has a large variance, and therefore the corresponding gradient is
prone to have a high variance as well. In Chapter 8, we show how to bypass such
optimization challenges using Rényi divergence variational inference.

5 Bias of the STL Estimator for the Importance
Weighted Bound

We consider a reparameterizable distribution qϕ(z | x; ) with noise distribution p(ϵ)
and a sampling path zϕ(ϵ) such that z ∼ qϕ(z | x; ) is equivalent to zϕ(ϵ), ϵ ∼ p(ϵ).
Roeder, Wu, and Duvenaud 2017 observed that because q(zϕ(ϵ) | x; ϕ) is multivariate
function that depending on ϕ two times, the gradients can be decomposed into the

9see the definition of the ESS in Section 1.2, Equation 2.10
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path derivative and the score function:

∇ϕ = log qϕ(zϕ(ϵ) | x) = dzϕ(ϵ)
dϕ

· δ log qϕ(z | x)
δz

∣∣∣
z=zϕ(ϵ)︸ ︷︷ ︸

path derivative

+ δ log qϕ(z | x)
δϕ

∣∣∣
z=zϕ(ϵ)︸ ︷︷ ︸

score function

.

(7.26)
Given ϵ1, . . . , ϵK ∼ qϕ(z | x) and setting w̃i = w̃θ,ϕ(x, zϕ(ϵi)), by injecting Equation
7.26 in the gradient of the importance weighted bound, we obtain:

∇ϕLK(x) =
∑

i

w̃i∇ϕ

[
log pθ(x | zϕ(ϵi)) + log pθ(zϕ(ϵi)) − log qϕ(zϕ(ϵi) | x)

]
=
∑

i

w̃i∇ϕ

[
log pθ(zϕ(ϵi) | x) + log pθ(x) − log qϕ(zϕ(ϵi) | x)

]
=
∑

i

w̃i∇ϕ

[
log pθ(zϕ(ϵi) | x) + log pθ(x) − log qϕ(zϕ(ϵi) | x)

]

=

path derivative︷ ︸︸ ︷∑
i

w̃i∇z
[

log pθ(zϕ(ϵi) | x) − log qϕ(zϕ(ϵi) | x)
]

· ∇ϕzϕ(ϵi)

−
∑

i

w̃i∇ϕ log qϕ(zϕ(ϵi) | x)︸ ︷︷ ︸
score function

.

STL consists in dropping the score function term; thus the bias is∑
i w̃i∇ϕ log qϕ(zϕ(ϵi) | x).
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CHAPTER 8
Taming Importance

Weighted Bounds using
Rényi Divergences

This chapter cites two of the contributions in this thesis:
Paper B: “Optimal Variance Control of the Score-Function Gradient Estimator for
Importance-Weighted Bounds” (Liévin et al. 2020)
Paper D: “Variational Open-Domain Question Answering” (Liévin et al. 2022b)

Figure 8.1: Training a one-layer Gaussian VAE with the pathwise and the STL estimators
applied to the Rényi Variational Bound (RVB) for α ∈ {0, 0.3, 0.7} and different numbers
of Monte Carlo samples K = [1, 300]. α > 1 allows targeting higher ESS, reaching higher
marginal likelihood and learning, better inference networks, as measured by the divergence
DKL(qϕ‖pθ). We also report the SNR of the gradient, which grows with K for α = 0.3.
When α is set to zero, the RVB corresponds to the importance-weighted bound (IWB). For
α = 0 (RVB=IWB), the SNR decreases with K, even when using the STL estimator.



60 8 Taming Importance Weighted Bounds using Rényi Divergences

The importance-weighted bound (IWB) approximates the marginal likelihood
more tightly as the number of Monte Carlo samples K is increased (Burda, Grosse,
and Salakhutdinov 2016). At evaluation time, it is therefore common practice to eval-
uate as many samples as possible. However, during training, increasing the number
of samples is not always beneficial, as it results in a worse learning signal (Rainforth
et al. 2018).

In Chapter 7, we showed that, in the case of a system with a high effective sample
size (ESS), one can improve the quality of the learning using OVIS control variates.
However, when the ESS is close to one, even when using the OVIS control variates,
maximizing the importance weighted bound might not lead to optimal learning. In
the conclusion of Chapter 7), we discussed that this limitation is intrinsic to the
importance weighted bound and therefore we sought tools that overcome this problem.

In this chapter, we argue that the Rényi variational bound (RVB), presented in
Section 4, can be utilized to tame importance-weighted VAEs. Based on results from
Papers B and D, we present empirical evidence supporting that the RVB can be
applied to target higher ESS, which in turn yields higher SNR and results in superior
learning performances.

1 Navigating Between Variational Bounds
Although the importance-weighted bound (IWB) provides a tighter marginal likeli-
hood estimate than the evidence lower bound (ELBO), a tighter bound is not nec-
essarily a better tool for optimization. In this section, we discuss two approaches to
combining variational bounds.

1.1 Inner and outer samples
Rainforth et al. 2018 suggested combining variational bounds with linear combina-
tions of bounds, or alternatively by evaluating the IWB using more than one outer
samples. Given a number of K inner samples and M outer samples, the K-Samples
IWB can be estimated using KM samples using the following estimate:

L̂M,K(x) := 1
M

M∑
i=1

log 1
K

K∑
j=1

wθ,ϕ(x, z(i)
j ), z(1)

1:K , . . . , z(M)
1:K ∼ qϕ(z | x) . (8.1)

The pathwise gradient of the estimate L̂M,K(x) benefits from an inference network
SNR in O(

√
M/K). Therefore, under a particle budget MK, the bound L̂M,K(x)

allows trading tightness of the bound for better SNR, which was confirmed by the
authors empirically.
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1.2 Rényi variational bound
Connecting bounds Similarly to the work of Rainforth et al. 2018, we proposed in
Paper B to solve optimization issues using multiple variational objectives. For α 6= 1,
the RVB is defined as

Lα(x) := 1
1 − α

logEqϕ(z|x)

[
w1−α

θ,ϕ (x, z)
]

. (8.2)

The VRB is continuous in α and is extended by continuity in α = 1. In practice, the
RVB is estimated with the importance-weighted Rényi bound (IWRB):

LK
α (x) := 1

1 − α
Eqϕ(z1:K |x)

[
log 1

K

K∑
i=1

w1−α
θ,ϕ (x, zi)

]
(8.3)

which connects the ELBO, IWB and the marginal likelihood through the following
equations:

LK
α≥0(x) ≤ log pθ(x) (8.4a)

LK
α=0(x) =LK(x) (8.4b)

LK
α=1(x) =L(x) . (8.4c)

Rényi divergence variational inference offers a probabilistic framework to navigate
between multiple variational bounds. Similarly to Rainforth et al. 2018, we argue
that utilizing the ELBO, especially during early training, can benefit learning.

Effective sample size The expression of the RVB 8.2 provides additional insights
as to why using looser bounds might be beneficial. The RVB relies on an importance
sampling estimate E

[
w1−α

θ,ϕ (x, z)
]
. When the parameter α is increased from zero to

one, the distribution of weights is relaxed, and the weights become approximately
equal, converging to w0

θ,ϕ(x, z) = 1. Consequently, the effective sample size increases
and the variance diminishes.

Guided training In α = 0 the VRB aligns with the marginal likelihood. The
value, and therefore the gradient, of VRB is independent of the approximate posterior
qϕ(z | x). However, in α = 1 one, the VRB aligns with the ELBO, which value
depends on the approximate posterior. When a good approximate posterior can
be designed using domain knowledge, the ELBO can be utilized to constrain the
optimization of the generative model. Indeed, considering the variational parameter
known and fixed, maximizing the ELBO consists in maximizing the joint probability
pθ(x, z) under qϕ(z | x):

∇θLα=1(x) = Eqϕ(z|x) [∇θ log pθ(x, z)] . (8.5)
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Figure 8.2: Training a Sigmoid Belief Network using OVIS, VIMCO and the TVO. We
apply OVIS to the importance-weighted bound (IWB) and to the Rényi Variational Bound
(RVB). The RVB allows targeting higher ESS (during initial training), higher marginal
likelihood, and leads to learning better approximate posteriors, as measured by the KL
divergence DKL(qϕ‖pθ).

2 Empirical results
Training deep latent variable models is challenging and the initialization often affects
the whole course of the experiment. A low ESS might impair initial learning and the
model might not recover with further training. In the section below, we compare the
use of the ELBO, the IWB and the RVB for training VAEs.

2.1 Sigmoid Belief Network
In Paper B, we applied OVIS to the RVB and experimented with interpolating the
parameter α from 0.99 to 0 during early training. We report the training dynamics
in Figure 8.2. The RVB warm-up scheme appeared to be effective, as the models
trained with RVB warm-up consistently reached higher marginal likelihood than the
other models, including those trained using the TVO.
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2.2 Gaussian VAE
We applied the pathwise estimator and STL (Roeder, Wu, and Duvenaud 2017) to
the RVB and trained a one-layer Gaussian VAE (the experimental setup is reported
in Paper B). In figure 8.1, we report the training curves for multiple values α =
{0, 0.3, 0.7} and multiple number of samples K = 1, 300]. For both the estimators,
the RVB with α = 0.7 provided the best performances across the four considered
metrics (marginal likelihood, DKL(qϕ‖pθ), ESS and SNR).

2.3 Open-domain Question Answering

Figure 8.3: Training an open-domain question answering (ODQA) model using
the evidence lower bound (ELBO), the importance weighted bound (IWB) and the
Rényi variational bound (RVB). When using the RVB, the parameter α is decreased
from one (ELBO) to zero (IWB) during the first 3k steps. We report, over training,
the validation answering accuracy, the entropy of the retriever distribution and the
KL divergence DKL(qϕ(d | a, q)‖pθ(d | q)). The RVB allows for reaching higher
answering accuracy. During early training, using the RVB with α > 0 constrains
the retriever pθ(d | q) to match the approximate posterior qϕ(d | a, q), resulting in
smaller KL divergence between the two distributions.

In Paper D, we applied Rényi divergence variational inference to open-domain
question answering (ODQA). In this experiment, the model is a VAE which prior
pθ(z) is a document retriever and which decoder pθ(x | z) is a machine reading
comprehension model. The approximate posterior is a checkpoint of the retriever,
updated every 3k steps, except for the first period of 3k steps where it corresponds
to a domain-specific retriever model (BM25) used to guide the retriever.1

We experimented with (i) using the RVB and interpolating α from 1 to 0 during
the first 3k steps, (ii) using the IWB and (iii) using the ELBO. In Figure 8.3, we
report the performances and retriever characteristics observed during training. Using

1learn more about the implementation details in Chapter 10
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the RVB affects the learning dynamics positively when compared to using the IWB
and the ELBO (more details in the caption).

3 Conclusion
The RVB framework offers a theoretically grounded method for navigating between
variational bounds. Although the idea of combining multiple bounds was introduced
in Rainforth et al. 2018, using the RVB is more flexible and often more practical than
combining inner and outer samplers.

We found the RVB to be a versatile tool that can be applied in various settings.
In Papers B and D, we applied the RVB to training deep latent variable models
successfully. In Paper 7, the RVB allowed for accelerating the learning of inference
networks, leading to overall better generative models. In Paper D, optimizing with a
looser bound allowed guiding the initial learning steps of the document retriever based
on a reference domain-specific retriever model. Overall, our experiments showed that
interpolating between variational bounds is effective at stabilizing the training of deep
latent variable models and often lead to better performances.
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CHAPTER 9
Zero-Shot Medical

Reasoning using Large
Language Models

This chapter cites one of the contributions in this thesis:
Paper C: “Can large language models reason about medical questions?” (Liévin, Hother,
and Winther 2022)

Figure 9.1: Answering a USMLE question with GPT-3 using zero-shot chain-of-
thought (CoT) prompting (Kojima et al. 2022). The technique consists in prompting
the language model two times: first to generate a CoT, second to generate an answer
based on the question and the generated CoT. In this example, the CoT (reasoning)
and the answer, in red, was generated by GPT-3. The question is displayed in black
and the zero-shot CoT cues (instructions) are printed in blue.

Large language models (LLMs) such as GPT-3 Brown et al. 2020b, PaLM (Chowd-
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hery et al. 2022) or Gopher (Rae et al. 2021) have acquired unprecedented natural
language understanding capabilities. LLMs have achieved human-like performances
on many NLP benchmarks, leading to many of them being considered obsolete (Sri-
vastava et al. 2022). As language models are scaled to using billions of of parameters,
language models acquire new abilities (e.g., arithmetic, natural language understand-
ing or code generation) which were not observed in smaller language models (Ganguli
et al. 2022). In Paper C, we investigated whether the advanced natural language
understanding capabilities of large language models could be applied to solve chal-
lenging medical problems. In this chapter, we introduce our methods and review the
main empirical findings.

1 Background
We begin with reviewing background information about prompt-based learning, zero-
shot reasoning, retrieval augmentation and, last, introduce the two medical question-
answering datasets that will be studied in this chapter. We recommend readers who
are familiar with prompt-based learning to skip this section and move to Section 2
directly.

1.1 Prompt-based learning
Traditional language models such as BERT (Devlin et al. 2019) are pre-trained on
large unstructured text datasets before being fine-tuned on task-specific labelled data.
Thanks to unparalleled language proficiency, large language models can be applied to
new tasks without the need for expensive task-specific fine-tuning.

The new learning paradigm; pre-train, prompt and predict (Liu et al. 2021), con-
sists in crafting text instructions which completion will correspond to a prediction.
The text instructions or prompts corresponds to a description of the task, which can
be augmented using external knowledge and task examples (See Table 9.1). When
incorporating task examples into the prompt, this corresponds to a few-shot learning
setting, otherwise, it is referred to as zero-shot learning.

1.2 chain-of-thoughts
Prompts are not limited to encoding domain knowledge and can be engineered to
instruct the model how to solve the task. In problems that require reasoning about
the task and the available data (e.g., arithmetic, question answering), Wei et al.
2022 showed that it was possible to guide LLMs to break the problems into multiple
reasoning steps via task-specific prompts. It translates to making the inner reasoning
of an LLMs explicit, hence the term “chain-of-thought” (CoT).
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Table 9.1: Examples of zero and few-shot prompt-based learning along with com-
pletions. Prompts can be engineered to augment the task with additional knowledge,
instructions or examples. The task (question) is displayed in black , the cues aug-
menting the prompt are printed in blue and the completions are showed in red.

Task Prompt and completion
QA Document: The Parisii settled on the banks of the Seine around 259

BC. Question: When was Paris founded? Answer: around 259 BC

Translation French: Mon cheval est très rapide. English: My horse is very fast.

Arithmetic 2 + 3 = 5, 6 - 7 = -1, -3 + 5 = 2

Although Wei et al. 2022 required task-specific prompts, Kojima et al. 2022 demon-
strated that CoTs could be obtained using a single and domain-agnostic prompt “Let’s
think step by step”. The technique, coined zero-shot CoT, is illustrated in Figure 9.1.

1.3 Grounding
Large language models memorise part of the knowledge embedded into the training
data but might lack – or fail to recall – domain knowledge at inference time or
hallucinate facts (Maynez et al. 2020). In Paper C, we experimented with grounding
questions in the knowledge provided by factual documents. This corresponds to an
instance of open-domain question answering, discussed in depth in Chapter 10.

1.4 Medical question answering datasets
Paper C applies prompt-based learning to three medical multiple-choice question-
answering datasets. We provide below a brief introduction to the USMLE and the
MedMCQA datasets. Read more about the question-answering datasets in Paper C.

USMLE The USMLE (MedQA) dataset Jin et al. 2021 gathers historical questions
from the United States Medical Licensing Examination (USMLE), the examinations
that medical professionals are required to pass before practising in the US.1 The
questions are notorious for being challenging as they often require strong problem-
solving skills coupled with comprehensive medical knowledge. Each question features
a description of a medical case and a question that emulates the real clinical setting.

MedMCQA The MedMCQA (Pal, Umapathi, and Sankarasubbu 2022) is a large-
scale multiple-choice question answering collected from Indian medical school entrance

1https://www.usmle.org/about-usmle

https://www.usmle.org/about-usmle
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exams (AIIMS and NEET-PG). The MedMCQA covers a broad range of medical
topics (e.g., dentistry, psychiatry, surgery) and includes various problem types (e.g.,
logical, knowledge). The USMLE questions are often more difficult to answer than
the MedMCQA questions, which tend to focus on evaluating core medical knowledge.

2 Medical Reasoning with Large Language Models
Paper C applies a number of prompt-based learning strategies to medical problems. In
particular, we investigated few-shot learning (Brown et al. 2020a), zero-shot CoT (Ko-
jima et al. 2022), retrieval augmentation (Lazaridou et al. 2022) and ensemble mod-
els (Wang et al. 2022). In this section, we present an overview of our method. Please
refer to Paper C for further details.

2.1 Prompt engineering
We investigated the design of prompts along two main questions: (I) Can we adapt
zero-shot CoT to the medical domain? and (II) How can we incorporate question-
specific knowledge such as Wikipedia articles, examples of questions and CoTs into a
single prompt?

CoT prompt In Paper C, we selected 30 variations of the original CoT prompt
“Let’s think step by step” such as “Let’s derive the differential diagnosis” or “ Let’s
follow a Bayesian step by step approach”. Based on a small subset of USMLE ques-
tions, we benchmarked the 30 prompts and selected 5 of them, which are reported in
the paper.2

Prompt templates In Table 9.2, we illustrate the templates utilized to build
prompts based on questions, additional context (articles) and reference question-
explanation-answer triplets (few-shot learning). We represent the zero-shot CoT
setting as well as the CoT-free setting (denoted zero-shot ∅). The templates are
a direct application of Brown et al. 2020a; Kojima et al. 2022; Lazaridou et al. 2022.

2.2 Generative models
In this section, we describe the model test in Paper C using the mathematical language
introduced in Chapter 5, Section 1.

2Although more explicit prompts like “ Let’s follow a Bayesian step by step approach” didn’t
give substantially better performances, in some cases, this actually triggered GPT-3 to apply Bayes’
rule (see Paper C, Table 12).
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Table 9.2: Prompt templates utilized for multiple-choice question answering. In
the table below, we display the [provided data] such as the question, additional
context, or the answer in black, the <completions> generated by GPT-3 are printed
red. We use OR to indicate when a variable can be either [provided data] OR a
<completions>. The prompt cues (instructions) are displayed in blue. The symbol
∅ is used to represent empty strings.

Zero-shot ∅ Zero-shot CoT
Question Question: [Question] Question: [Question]
CoT ∅ Answer: Let's think step by step <CoT>
Answer Answer: among A through D, the answer is <answer> Therefore, among A through D, the answer is <answer>

Zero-shot ∅ + grounding One-shot CoT
Shot ∅ Question: [Question]

∅ Answer: Let's think step by step [Explanation] OR <CoT>
∅ Therefore, among A through D, the answer is [answer]

Context Context: [Context] ∅
Question Question: [Question] Question: [Question]
CoT ∅ Answer: Let's think step by step <CoT>
Answer Answer: among A through D, the answer is <answer> Therefore, among A through D, the answer is <answer>

Single-answer likelihood Reusing the notation from Chapter 5, we denote y a
question, x its answer and z a CoT. Given K a variable representing all the task
augmentations (e.g., task instructions, task examples, Wikipedia articles), we denote
f1(y,K) the CoT prompt and f2(u,K)

)
the answer extraction prompt (see Figure

9.1). f1 and f2 represent the template functions that allow composing the task
augmentations K with the text input into a prompt. Using this notation, we express
the generative reasoning model as:3

pθ

(
x, z | y,K

)
:= pθ

(
x | f2([ȳ ; z],K)

)︸ ︷︷ ︸
answering step

pθ

(
z | ȳ

)︸ ︷︷ ︸
reasoning step

, ȳ := f1(y,K) . (9.1)

Ensemble model In the continuity of Wang et al. 2022, we explored combining
multiple prompts into an ensemble model. This corresponds to using P different
task augmentations K1:P = {K1, . . . ,KP } (e.g., choice of CoT prompt, additional
Wikipedia passages). Using weights α1 = . . . = αP = 1/P , we define the ensemble
model as:

pθ(x | y,K1:P ) :=
P∑

i=1
αi pθ(x | y,Ki) . (9.2)

3 Main Results
In Paper C, we experimented with zero-shot, few-shot, and grounding settings on
three datasets using single-prompt models and using ensemble models. We evaluated

3We repeat here the Equation 9.1, Section 1, for readability.
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the models quantitatively based on the question-answering benchmarks and qualita-
tively with the help of a medical expert. In this Section, we present the gist of the
results.

3.1 Experimental setup
Language Model All the main experiments were carried out using InstructGPT, a
version of the largest of GPT-3 (175 billion parameters) fine-tuned for prompt-based
learning based on human feedback (Ouyang et al. 2022).

Predictions All models were sampled deterministically (greedy decoding) via the
OpenAI API.4 The probability pθ

(
x | f2([ȳ; z],K)

)
is approximated with 1 when the

correct answer appears in the generated answer string, 0 otherwise.

Grounding In the grounded setting, we retrieved K = 1 document for each an-
swer option (four documents per question) using a composite BM25 (Robertson and
Zaragoza 2009) retriever indexing passages collected from Wikipedia articles.

3.2 Zero-shot answering accuracy

Table 9.3: Zero-shot answering accuracy (%) of GPT-3 on the MedMCQA (validation) and
USMLE (test) datasets using CoT-free prompts, the original CoT prompt and an ensemble
of prompts, with and without grounding (conditioning on Wikipedia articles).

Model Grounding Prompting MedMCQA USMLE
GPT-3 7 Standard 44.0 46.0
GPT-3 7 CoT⋆ 40.8 47.1
GPT-3 3 Standard 46.7 47.3
GPT-3 3 CoT⋆ 42.2 45.9
GPT-3 7 Ensemble (P=6) 42.4 50.0
GPT-3 3 Ensemble (P=6) 48.8 49.3
GPT-3 7 + 3 Ensemble (P=12) 47.6 53.1
Uniform 25 25
Fine-tuned SOTA (BERT) 7 – 40† –
Fine-tuned SOTA (BERT) 3 – 43† 44.6‡

Human (passing score) 3 – ≥50.0 ≥60
⋆“Let’s think step by step” †Pal, Umapathi, and Sankarasubbu 2022 ‡Yasunaga, Leskovec, and Liang 2022

4https://openai.com/api

https://openai.com/api
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In Table 9.3, we summarize the answering performances on the MedMCQA and the
USMLE datasets and discuss below the main findings. In Paper C, we provide further
empirical results and an extended analysis of the results.

Single-prompt Looking at the single-prompt models, this experiment allowed us
to demonstrate that GPT-3 is knowledgeable about expert-level medical questions,
as it outperformed all the fine-tuned BERT baselines, even when the baselines are
conditioned on external knowledge sources.

Ensemble models Single-prompt CoT models are not necessarily better than the
CoT-free models. However, combining multiple prompts overall led to significantly
better performances.

Grounding Retrieval-augmented models significantly outperformed the others on
the MedMCQA, indicating that grounding GPT-3 with more knowledge can be help-
ful. Nonetheless, it is not clear whether grounding helps with the USMLE questions;
it is likely that the BM25 retriever is too simplistic for this problem.

3.3 Qualitative analysis

Table 9.4: Assessing GPT-3’s ability
to reason. Frequencies of observed suc-
cess (A,B,C) and failure (D,E,F) patterns
were identified among 50 CoTs. A CoT is
labelled if it contains at least one expres-
sion of the pattern, therefore a single CoT
can be classified both as a reasoning suc-
cess and a reasoning failure.

Pattern Total
A Correct reasoning step 70%
B Correct recall of knowledge 72%
C Correct reading comprehension 90%
D Incorrect reasoning step 62%
E Incorrect or insufficient knowledge 58%
F Incorrect reading comprehension 36%

The question-answering benchmark
provides an overall assessment of GPT-3’s
ability to answer difficult medical ques-

tions, In Paper C, we investigated how
GPT-3 succeeds and fails. Although lan-
guage models are known to be difficult to
interpret, CoT prompting is a unique op-
portunity for assessing the strengths and
weaknesses of GPT-3. We considered a
set of three main competencies: (i) abil-
ity to reason, (2) ability to recall knowl-
edge and (3) reading comprehension (find
a sample in Table 9.5).

In Table 9.4, we report the frequency
of each success and failure for each of
the patterns annotated by our medical ex-
pert. In Paper C, we display 30 CoT with
annotated successes and failures. Over-
all, GPT-3 appears to be more profi-
cient in reading comprehension than in
the reasoning and knowledge categories.
Although failures were observed in all
categories, the frequency of success pat-
terns is encouraging. In many cases, zero-
shot CoT prompting successfully trig-
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gered GPT-3 to generate multi-step prob-
lem solutions, which mobilize non-trivial

reasoning steps, recall of knowledge and
correct interpretation of medical data.

4 Conclusion
We demonstrated that, without requiring any domain-specific fine-tuning, GPT-3
can outperform the state-of-the-art fine-tuned language models on challenging medi-
cal question-answering datasets. We applied diverse prompting techniques, including
zero-shot CoT prompting, which allowed us to interpret the model predictions. The
qualitative evaluation indicated that CoTs overall make sense: GPT-3 mostly com-
prehend the provided data and can often relate it to its own medical knowledge with
the aim of solving a problem.

Although Paper C pioneered the use of large language models for answering com-
plex and realistic medical questions, our methodology remains simple. Leveraging
more inference-time compute by sampling a larger number of CoTs would allow us to
automatically explore many potential solutions to each problem, in turn leading to
better medical problem-solving performances.

Our results hint that a lack of domain knowledge could be compensated by cou-
pling language models with external sources of information; language models might
lack of domain knowledge but excel at reading comprehension. Therefore, using a
more accurate retriever and retrieving more document passages is likely to help. Aug-
menting language models with retrievers is the topic of the next chapter, in which we
present a framework for learning retrievers jointly with a question-answering model.
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Table 9.5: USMLE question and three annotated CoTs.

Three days after induction chemotherapy, a 9-year-old boy is admitted to the hospital
for fever and neutropenia. He was initially diagnosed with t(9;22)-positive acute T cell
lymphoblastic leukemia following workup for fatigue and pancytopenia. He is fully con-
scious. His blood pressure is 110/65 mm Hg, temperature is 39.5°C (103.1°F), pulse is
98/min, and respiratory rate is 14/min. Physical examination including examination of
the central venous catheter site shows no source of infection. Broad-spectrum antibiotics
are initiated. Which of the following factors about this patient most strongly indicates a
poor prognosis?
A) Age B) Cytogenetics C) Fever and neutropenia D) Initial presentation
3 Let’s use step by
step inductive reasoning,
given the medical nature
of the question.
The first thing that stands
out is that the patient is 9
years old. In general, chil-
dren have a better prognosis
than adults when it comes
to leukemia.
The next thing to consider

is the patient’s cytogenetics.
The fact that the patient
has t(9;22)-positive acute T
cell lymphoblastic leukemia
indicates that the patient
has a specific chromosomal
abnormality that is associ-
ated with a poor prognosis.

The next thing to con-
sider is the patient’s fever
and neutropenia. Fever and
neutropenia are both signs
of infection, and infection
is a serious complication
in leukemia patients, par-
ticularly in those who are
immunocompromised. Fi-
nally, we need to consider
the patient’s initial presen-
tation. The fact that the
patient was initially diag-
nosed with leukemia follow-
ing workup for fatigue and
pancytopenia indicates that
the patient’s leukemia was
advanced at the time of di-
agnosis.
All of these factors indicate
a poor prognosis for this pa-
tient.
Therefore, among A
through D, the answer
is B, cytogenetics.

7 Let’s think step by
step like a medical ex-
pert. The first step is
to gather information about
the patient. In this case, we
are given the following in-
formation: -The patient is
9 years old -The patient
has t(9;22)-positive acute T
cell lymphoblastic leukemia
-The patient is currently ex-
periencing fever and neu-
tropenia
The next step is to analyze
the information and look for
any patterns or clues that
could help us answer the
question.
In this case, the most im-
portant factor that indicates
a poor prognosis is the pa-
tient’s age. Children under
the age of 10 have a much
higher chance of relapsing
after treatment and a lower
chance of achieving remis-
sion.
Therefore, among A
through D, the answer
is A.

7 Let’s derive the differ-
ential diagnosis step by
step: 1) The patient has
fever and neutropenia.
2) The patient is 9 years old.

3) The patient has t(9;22)-
positive acute T cell lym-
phoblastic leukemia.
4) The patient’s initial pre-
sentation was fatigue and
pancytopenia.
The most likely cause of
the patient’s fever and neu-
tropenia is infection. The
patient’s age, cytogenetics,
and initial presentation are
all risk factors for infection.
Therefore, the factor that
most strongly indicates a
poor prognosis is the pa-
tient’s age.
Therefore, among A
through D, the answer
is A.

A Correct reasoning step D Incorrect reasoning step
B Correct recall of knowledge E Incorrect or insufficient knowledge
C Correct reading comprehension F Incorrect reading comprehension
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CHAPTER 10
Learning to Search

Wikipedia by Answering
Medical Questions

This chapter cites one of the contributions in this thesis:
Paper D: “Variational Open-Domain Question Answering” (Liévin et al. 2022b)

Figure 10.1: Open-domain question answering: answering questions by retrieving
knowledge from a large knowledge base.

Large language models have taken over the field of natural language process-
ing. Scaling Transformers to using billions of parameters and pre-training by mod-
elling hundreds of gigabytes of text1 results in exceptionally good language models.
Nonetheless, it is challenging to ensure that all information referenced in the pre-
training set is factual, not hateful or discriminative. A failure to curate the training
data which leads to large language models repeating, and sometimes amplifying, dan-
gerous content (Bender et al. 2021). Furthermore, language models don’t necessarily
retain all pre-training knowledge and, at inference-time, models might be subject to

1The Pile (Gao et al. 2021), a corpus utilized to train large language models, contains 825 GB
of text, Wikipedia contains around 33 GB of text.
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hallucinating erroneous knowledge (Maynez et al. 2020). There are flaws that need
to be controlled before deploying large language models in sensitive applications such
as healthcare.

Grounding language models in curated knowledge sources offers a solution to these
limitations (Lazaridou et al. 2022; Shuster et al. 2021). Instead of relying solely on
the knowledge retained in their weights, language models can be augmented with
external knowledge bases indexed by a search component (e.g., search engine, BM25,
language model). Knowledge bases, such as Wikipedia, can be more easily curated
and updated, ultimately enabling retrieval-augmented language models to be applied
to new domains without additional pre-training.

In Paper D, we introduced the Variational Open-Domain (VOD) framework for
end-to-end training and evaluation of retrieval-augmented models. We applied the
framework to learn retrieval-augmented question answering models with a differen-
tiable search component. Using a fraction of Wikipedia as a knowledge base, our
approach resulted in state-of-the-art answering accuracy on two medical question-
answering datasets. The search component learned in the process appeared to be
competitive with FindZebra; a search engine specialized for rare diseases.2 In this
chapter, we begin with providing background on open-domain question answering
before introducing the Variational Open-Domain (VOD) framework for end-to-end
learning of retrieval-augmented models using variational inference. We conclude this
chapter with an overview of our empirical findings.

1 Background
In this section, we introduce the main building blocks of open-domain question answer-
ing and retrieval-augmented language modelling (task definition, parameterization of
the models using pre-trained language models and optimization objectives). Readers
with expertise in open-domain question answering can safely skip this section and
resume reading at Section 2.

1.1 Open-Domain Question Answering
Open-domain question answering (ODQA) is the task of answering questions using
an unstructured knowledge base such as Wikipedia. The task originates from the
annual competition held at the Text REtreival Conference (TREC)3, which catalyzed
advances in ODQA, and ultimately led to the creation of complex ODQA systems
like YodaQA (Baudiš 2015) and DeepQA(Ferrucci et al. 2010); the underlying system
that led to the much-publicised victory of IBM Watson in the Jeopardy! challenge4.5

2http://findzebra.com
3http://trec.nist.gov/data/qamain.html
4http://en.wikipedia.org/wiki/IBM_Watson
5Credits to Rajpurkar et al. 2016 and Chen et al. 2017a for summarizing the history of ODQA.

http://findzebra.com
http://trec.nist.gov/data/qamain.html
http://en.wikipedia.org/wiki/IBM_Watson
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Classical ODQA systems like YodaQA or DeepQA answer questions by combining
information from multiple structured (Freebase, DBPedia) and unstructured sources
(Wikipedia) using multiple layers of expert systems. Chen et al. 2017a leveraged
the recent progress in natural language understanding to design a much simpler sys-
tem. This system, dubbed DrQA, can answer questions relying on an unstructured
knowledge base (Wikipedia) and two components: a TF-IDF retriever and a machine
reading comprehension model to answer questions based on a context document.

1.2 Latent retrieval
Instead of treating the document retriever as a static component, Lee, Chang, and
Toutanova 2019 views ODQA as an instance of a conditional latent variable model.
Given a question q with answer a and a corpus of documents D = [d1, . . . , dN ], the
marginal task likelihood is expressed as

pθ(a | q) :=
∑
d∈D

pθ(a | q, d)︸ ︷︷ ︸
reader

pθ(d | q)︸ ︷︷ ︸
retriever

, (10.1)

where pθ(d | q) is potentially a learned distribution implemented using neural net-
works (retriever), pθ(a | q, d) is a machine reading comprehension model (reader) and
θ is the parameter describing the whole system with joint distribution pθ(d, a | q).

1.3 Differentiable Search
In the literature, the retriever is defined as a truncated distribution

pθ(d | q) := 1[d ∈ Tϕ(q; K)] exp fθ(q, d)∑
d′∈Tϕ(q;K) exp fθ(q, d′)

, (10.2)

where fθ(q, d) scores the document d given the query q and Tϕ(q; K) is a set of the
top K documents given a scoring function fϕ with argument q. K is the number
of documents that fit in memory when evaluating the training objective. In general,
most of the documents in the corpus have almost zero probability under pθ(d|q) ∝
exp fθ(q, d), thus fϕ is generally defined as a checkpoint of fθ.6

The scoring function fθ can be implemented using pre-trained language models.
However, computational efficiency is a key requirement, as collections of documents
might reference million or even trillion of documents (Borgeaud et al. 2021). We
consider a BERT pre-trained language model (Devlin et al. 2019) and denote bert(x)
the vector representation of x returned by BERT (output at the CLS token).7 Below,
we present two alternatives to implementing fθ(q, d) using language models.

6In the literature, the truncated retriever distribution is defined implicitly by assuming a top-K
approximation. The truncated re-interpretation 10.2 is a contribution of Paper D.

7Read more about BERT in Section 2
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Dual-encoder In most of the ODQA methods, the scoring function adopts a dual-
encoder architecture. This consists of encoding q and d into vector representations
bert(q) and bert(d) separately and defining the scoring function using a vector
similarity metric. In the case of the inner product, the scoring function is defined as:

fθ(q, d) = bert(q)T bert(d) . (10.3)

Each vector representation is evaluated independently of the other variables. Thus, for
a dataset of Nq queries and Nd = N documents, computing all vector representations
is of order O(NqLq + NdLd) where Lq and Ld are the maximum number of query
and document tokens. Retrieving the set Tϕ(q; K) of the top-K documents can be
achieved with low-latency thanks to efficient vector similarity search libraries like
faiss (Johnson, Douze, and Jegou 2021). In practice, the document vectors are
fixed (Borgeaud et al. 2021; Lewis et al. 2020), evaluated asynchronously (Guu et al.
2020) or periodically (Liévin et al. 2022b; Paranjape et al. 2021).

Cross-attention encoder The inner-product scoring model defined in Equation
10.3 might be restrictive. The full machine reading comprehension capabilities of the
language model can be exploited by processing both the question and the document
as a single input [d; q], given a projection matrix W with output dimension 1:

fθ(q, d) = bert ([d; q]) W . (10.4)

Nonetheless, the computational computational complexity of the cross-attention
model is O(NqNd(Lq + Ld)) and is therefore prohibitively expensive to evaluate.
Cross-attention encoders are generally coupled with a cheaper retrieval process and
used as a re-ranking step. This was explored in Lazaridou et al. 2022 by re-ranking
Google Search results thanks to a large language model.

1.4 Learning to retrieve documents
Weak supervision In the case where document labels are available, or can be
inferred accurately enough, a differentiable retriever can be optimized via supervised
learning, as originally explored in Karpukhin et al. 2020 (Dense passage retrieval).

Likelihood-based learning The marginal likelihood defined in Equation 10.1 is
differentiable and therefore the whole system can be optimized jointly. However, the
Monte Carlo estimate of the gradient of Equation 10.1 often suffers from high variance
at initialization, limiting its feasibility.

Lower variance with pre-training The problem of high variance can be con-
tained by pre-training the retriever using an auxiliary task such as the Inverse Cloze
Task (ICT, Lee, Chang, and Toutanova 2019). The ICT task consists in learning to
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predict whether two sentences belong to the same context, which has been success-
fully applied as an unsupervised pre-training scheme in subsequent work (Guu et al.
2020; Izacard et al. 2021; Sachan et al. 2021).

Variational inference Alternatively ODQA models can be trained using a varia-
tional objective. This corresponds into using an approximate posterior rϕ(d | a, q)
which can be conditioned on the answer a. In Paranjape et al. 2021, the parameters of
the system are maximized using both marginal task likelihood 10.1 and the evidence
lower bound:

L(a, q) := Eqϕ(d|a,q)

[
log pθ(a, d | q)

rϕ(d | a, q)

]
. (10.5)

2 The Variational Open-Domain Framework

In this section, we present the Variational Open-Domain (VOD) framework, which
consists of a variational re-interpretation of ODQA backed with computationally effi-
cient importance-sampling estimates. We begin with presenting the Rényi variational
bound for ODQA, discuss the choice of retriever and approximate posterior and con-
clude presenting with presenting tractable self-normalized importance sampling esti-
mates for the variational bound.

2.1 Rényi variational bound

VOD estimates the log marginal task likelihood using the Rényi variational bound
(RVB, see section 4). The RVB is defined based on an answer-aware approximate
posterior rϕ(a | a, q). Using a parameter α 6= 1 and defining wθ,ϕ(q, a, d) :=
pθ(a, d | q)/rϕ(d | a, q), the RVB for ODQA is:

Lα(a, q) = 1
1 − α

logErϕ(d|a,q)

[
w1−α

θ,ϕ (q, a, d)
]

. (10.6)

The RVB is a lower bound of the marginal task log-likelihood for α ≥ 0 its definition
is extended in α = 1 by continuity using Lα=1(a, q) := limα→1 Lα(a, q), which
corresponds to the ELBO L(a, d) (Equation 10.5). The RVB is continuous in α and
allows connecting the marginal likelihood and the ELBO.
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2.2 Retrievers with extended document support

Figure 10.2: Effect of the choice of P (size of the retriever support) on the training
of multiple-choice ODQA models. The approximate posterior depends on a checkpoint of
the retriever, updated every 3k steps. Using Larger values of P leads to lower ESS, slower
learning but ultimately better validation answering accuracy. NB The retriever is defined
for the multiple-choice setting with pθ(D|Q) =

∏M

i=1 pθ(di|qi) and M = 4. Sampling K = 8
documents for each of the M answer options yields KM = 4096 unique document tuples
D = [d1, d2, d3, d4] and as many importance weights.

The approximate posterior rϕ(d | a, q) is a parameterized by a function fϕ(q, a, d).
The framework doesn’t impose a choice of fϕ; in Paper D, fϕ is constructed as a
mixture of a checkpoint of fθ and a BM25 baseline.

Our work stands out of from the literature because it allows extending the size of
the support of the retrieval distribution to P > K, even if P documents cannot be
evaluated with a single call due to hardware limitations. Denoting Tϕ := Tϕ(q, a; P )
the corresponding set of the top P documents ranked by fϕ, in our work, the retriever
and the approximate posterior are defined as

pθ(d | q) := 1[d ∈ Tϕ] exp fθ(q, d)∑
d′∈Tϕ

exp fθ(q, d′)
, rϕ(d | a, q) := 1[d ∈ Tϕ] exp fϕ(q, a, d)∑

d′∈Tϕ
exp fϕ(q, a, d′)

.

(10.7)
Although choosing small values of P comes with a minor technical advantage (re-
ducing disk or memory usage), the choice of P has a more significant effect on the
optimization behaviour. The size of the set Tϕ defines a trade-off between explo-
ration and exploitation: a higher value of P allows sampling a greater diversity of
documents (exploration: high variance), but a smaller value makes it more likely that
all documents in the set Tϕ will be visited during training (exploitation: low variance).
In Figure 10.2, we report the training curves for multiple-choice ODQA models for
P ∈ {8, 32, 100} and K = 8.
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2.3 Monte Carlo estimation
Based on a retriever restricted to the top-K documents, the marginal likelihood 10.1
can be evaluated directly. Using the top-P retriever parameterization 10.7, estimating
the variational bound 10.6 poses three challenges, which we list below along with
practical solutions.

1. RVB estimation The RVB defined in 10.6 is intractable, it is estimated using
the K-sample importance weighted Rényi bound denoted LK

α (x) (introduced in
Section 3, Equation 3.17):

LK
α (a, q) := 1

1 − α
Eqϕ(d1:K |a,q)

[
log 1

K

K∑
i=1

w1−α
θ,ϕ (a, q, di)

]
≤ Lα(a, q) . (10.8)

2. Retriever normalizing constant estimation The normalizing constant∑
d∈Tϕ

exp fϕ(q, d′) of the retriever distribution 10.7 is intractable as it requires
P > K evaluations of fθ. Using the ratio of scores ζ(d) := exp fθ(q,d)

exp fϕ(q,a,d) , we
estimate the normalizing constant using the equality:∑

d∈Tϕ
exp fθ(q, d)∑

d′∈Tϕ
exp fϕ(q, a, d′)

= Erϕ(d|a,q) [ζ(d)] . (10.9)

3. Optimal resource allocation Each evaluation of fθ(q, d) is expensive and
the most of the mass of rϕ(d|a, q) might be concentrated in a few documents. To
avoid evaluating the same document multiple times, we applied self-normalized
priority sampling (see Section 1.3). Given S = {d1, . . . , dK} ⊂ Tϕ a set of doc-
uments sampled without replacement from rϕ(d|a, q), priority sampling comes
with self-normalized weights s̃(d1), . . . , s̃(dK) defined such that for a function
h(d), ∑

d∈S

s̃(d)h(d) ≈ Erϕ(d|a,q) [h(d)] . (10.10)

Combining the three above parts (Equations 10.8, 10.9 and 10.10), we obtain a
tractable importance sampling estimate of the RVB, which is the training and evalu-
ation bound given by the VOD framework:

LK
α (a, q) ≈ 1

1 − α
log
∑
d∈S

s̃(d)
(

pθ(a | d, q)ζ(d)∑
d′∈S s̃(d′)ζ(d′)

)1−α

. (10.11)

In Paper D, we provide the derivation and an estimate for the gradient of the gen-
erative model. Equation 10.11 is an instance of self-normalized importance sampling
(see Section 1) and is therefore consistent (i.e., converge to the true expected value
in the limit K = P with probability one). In our work, the approximate posterior
is considered static and defined based on a checkpoint of the retriever and BM25.
Thus, we didn’t attempt optimizing the variational parameter but the OVIS gradient
estimators introduced in Paper B are applicable to the VOD framework.
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3 Main Results
In Paper D, we applied the framework to the task of multiple-choice ODQA and eval-
uated the learned retriever based on an information retrieval benchmark.8 Applying
the VOD framework to multiple-choice QA requires some adaptation. The gist of it
consists of using a multiple-choice reader paired with a per-option retriever:

pθ(a⋆ | D, Q) := exp gθ(d⋆, q⋆)∑M
j=1 exp gθ(dj , qj)

, pθ(D | Q) :=
M∏

j=1
pθ(dj | qj), (10.12)

where A = [a1, . . . , aM ] is a tuple of M answer options, ⋆ is the index of the correct
answer, gθ is a function parameterized by BERT and D is tuple of M documents and
Q = [[q; a1], . . . , [q; aM ]]. In this section, we present an overview of the main empiri-
cal findings: good ODQA performances and applicability to information retrieval.

3.1 Multiple-choice ODQA

Table 10.1: ODQA accuracy of an ODQA models VOD framework. All models index
Wikipedia articles. VOD models are evaluated using Equation 10.11 with C=10 Monte
Carlo samples, each containing M·K=32 documents. GPT-3 is evaluated with M·K=4.

MedMCQA USMLE
Method Reader Retriever Valid. Test Valid. Test
VOD BioLinkBERT† BM25 51.6 55.3 41.0 40.4
VOD BioLinkBERT† BioLinkBERT† 58.3 62.9 53.6‡ 55.6‡

Uniform baseline – – 25.0 25.0 25.0 25.0
Zero-shot prompting GPT-3 – 44.0∗ – – 46.0
Zero-shot prompting GPT-3 BM25 46.7∗ – – 47.3
Zero-shot CoT prompting GPT-3 BM25 48.8∗ – – 53.1
Human (passing score) – – ≥ 50 ≥ 50 ≥ 60 ≥ 60
∗Estimated using 1k samples †Yasunaga, Leskovec, and Liang 2022 ‡Pre-training on the MedMCQA dataset

In Table 10.1, we report the answer accuracy of multiple models on the valida-
tion and test sets on the medical QA datasets introduced in Chapter 9, Section 1.
Compared to an ODQA system with a static retriever component (BM25), learning
a retriever jointly with the reader component using the VOD framework leads to sig-
nificantly better answering performances on both datasets, outperforming the strong
GPT-3 reasoner discussed in Chapter 9. In the next section, we study the learned
retriever from an information retrieval standpoint.

8Find a detailed description of the experimental setup in Paper D.
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3.2 Information retrieval

Figure 10.3: Visualizing the latent retrieval space. T-SNE projection of the embedding
space where are encoded the 712k document passages of the FindZebra corpus and the
248 FindZebra queries. The documents and questions are annotated based on their disease
identifier. The documents and queries annotated with the top 6 most frequent diseases
(found in the queries) are highlighted with colours. The others are represented in gray.
Some queries are successfully matched with a neighbourhood of relevant passages, although
passages taken from a single document might be scattered across the embedding space.

FindZebra is a search engine aiming at assisting the medical professionals in the
diagnosis of rare diseases (Dragusin et al. 2013).9 The search engine indexes a cor-
pus of 30.7k high-quality curated articles using Apache Solr (specialized BM25). In
Paper C, we compared our approach with the specialized tool based on a set of 248
search queries annotated with the correct diagnosis. The task consists of retrieving
a document matching the diagnosis associated with the query. Searching documents
using a BERT-based retriever translates into a nearest neighbour search problem in
the embedding space, which we visualize in Figure 10.3.

Task adaptation using distillation A multiple-choice retriever, as defined in
Equation 10.7, learns a retrieval function that depends both on the question q and
the answer option ai. We experimented with adapting the retriever to retrieve docu-
ments based only on the question q via knowledge distillation (Hinton, Vinyals, and
Dean 2015). This corresponds to optimizing a retriever pθ(d | q) by minimizing the
divergence DKL(rϕ(d|[q; a]) || pθ(d|q)) where rϕ(d|[q; a]) is a trained multiple-choice
VOD retriever.

9https://www.findzebra.com/

https://www.findzebra.com/
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Table 10.2: Retrieval performances. Com-
paring deep retrievers with FindZebra and a
simple BM25 baseline. the performances are
reported with and without task adaptation
(distillation).

Method Distil. MRR Hit@20
VOD 7 27.8 56.9
VOD 3 31.7 58.1
VOD+BM25 3 38.9 64.1
BM25 – 26.4 48.4
FindZebra – 30.1 59.3

Results In Table 10.2, we compared
the learned deep retrievers with API Find-
Zebra based on two popular metrics in
the field of information retrieval and the
mean reciprocal rank (MRR) and the pro-
portion of questions which correct article
appears in the top-20 results (Hit@20).
We found that with further task adap-
tation, VOD allowed learning retrievers
that are competitive with a specialized
search tool. When coupled with a sim-
ple lexical search baseline (BM25) our ap-
proach outperforms the FindZebra API.

4 Conclusion
VOD is a new framework for evaluating and end-to-end training of retrieval aug-
mented models. The Rényi variational bound introduces a trade-off between the
tightness of the lower bound and overcoming optimization challenges; as studied in
Chapter 8. Compared to the literature, VOD is the first method that applies vari-
ational inference methodically, allowing defining document retrievers on arbitrary
subsets of documents (P ≥ K). We hope VOD will spark more interest in applying
variational inference in natural language processing problems.

The multiple-choice VOD end-to-end systems scored new state-of-the-art results
on two medical question-answering datasets, outperforming the method presented in
Chapter C. Given the impressive reading comprehension capabilities of GPT-3, this
indicates that VOD allows learning strong document retrievers. We confirmed this
intuition by challenging the specialized rare disease search engine FindZebra.

Applying VOD to optimize differentiable ODQA systems resulted in a significant
performance jump compared to the literature. This result corroborates the good
performances of retrieval-augmented models found in the literature. We hope that
VOD will contribute to large language models pushing the current boundaries of
machine intelligence.



CHAPTER 11
Conclusion

1 Summary
This thesis investigates the use of deep latent variable models for natural language
processing. We organized the dissertation on three following research questions:
Q1: How to design deep latent variable models for text data?
Q2: How to optimize latent variable models using variational inference?
Q3: How to apply latent variable models to natural language processing tasks?
We first review background material in Monte Carlo methods, variational inference
and deep generative models. In the second part, we discussed three types of latent
variable models for text, two of which relied on language as a latent variable. In
the third part, we delved into the topic of variational inference and optimization. Fi-
nally, we experimented with the tasks of medical question-answering and information
retrieval, developing domain-specific methods in the process.

Deep latent variable models for language modelling (Q1) In chapter 5, we in-
troduced BIVA: a deep Variational Autoencoder designed with a flexible bidirectional
bottom-up and top-down inference network (Paper A). We presented the bidirectional
architecture and reviewed one of the image modelling experiments (CIFAR-10). show-
ing that BIVA’s deep hierarchy of latent variables is competitive with the autoregres-
sive models. We Applied BIVA to text modelling and reported that autoregressive
language components might be a necessary component for text modelling.
In Chapter 6, we presented two models with structured latent spaces. The first
model (Paper C) defines a latent reasoning process. The second model (Paper D) is
a language model augmented with a retrieval process that indexes a large collection
of documents (open-domain question answering).

Importance weighted bounds and optimization (Q2) In chapter 7, we sought
the optimal control variate for the score function estimator applied to the importance
weighted bound (Paper B). We presented a new family of estimators named OVIS.
It extends the score function estimator (and VIMCO) with more optimal baselines.
The type of baseline must be selected based on the task (compute budget, effective
sample size). We concluded the chapter with a discussion about the limitation of the
importance weighted bound in the low effective sample size regime.
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In Chapter 8, based on empirical results from Papers B and A, we showed that Rényi
divergence variational inference can be applied to circumvent the optimization chal-
lenges associated with the importance weighted bound. In practice, this consists of
interpolating between the evidence lower bound and the importance weighted bound.

Medical question-answering and information retrieval (Q3) In Chapter 9,
we applied large language models (GPT-3) to answer challenging medical questions.
We engineered prompts to trigger the language model to generate chain of thoughts,
to utilize factual documents retrieved from Wikipedia (grounding) and to utilize ref-
erence question-answer pairs (few-shot learning). We recorded good answering per-
formances, notably when combining multiple chain-of-thoughts.
In chapter 10, we presented VOD (Variational Open-Domain), a framework for end-to-
end training and evaluation of retrieval-augmented language models. The framework
consists of using the variational Rényi bound, defining truncated retriever parameter-
ization and estimating the bound and its gradient using self-normalized priority sam-
pling. We applied the framework to learn end-to-end open-domain question-answering
models and advanced the state-of-the-art on two medical question-answering datasets.
We employed the learned retriever for the information retrieval and outperformed the
search engine FindZebra on a disease diagnosis benchmark.

2 Closing remarks
In this thesis, we have studied various alternatives to designing latent variable models
for natural language processing. Structured latent spaces that encode external data
or model generative sub-routines are a promising research direction. Latent variable
models can be designed as complex simulators which interact with external knowledge
sources using large language models. How to best design and apply such models
remains an open research question, but discrete stochastic optimization is likely to
play a key role in that domain.
We have studied the topic of variational inference and observed that each variational
bound is best utilized depending on the experimental parameters such as the com-
pute budget and the fit of the proposal distribution, which can, for instance, be
measured by the effective sample size. Our results corroborate that “Tighter Varia-
tional Bounds are Not Necessarily Better” (Rainforth et al. 2018), and therefore it is
often recommended to use a combination of multiple variational bounds. We found
in Rényi divergence variational inference (Li and Turner 2016) an elegant framework
to do so. Our findings are aligned with the original philosophy of variational infer-
ence, that augmenting the model with additional parameters simplifies the learning
problem (Jordan et al. 1999). Maximizing the evidence lower bound guides optimiza-
tion with constraints imposed by the approximate posterior, leading to a simpler and
lower-variance initial objective. Combined with OVIS, this thesis offers a complete
method to train deep discrete latent variable models using variational inference.
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Large language models are transforming the field of natural language processing and,
more generally, machine intelligence. Language models have acquired such strong
natural language understanding capabilities that language itself can be used as an
interface for machines to learn. In this thesis, this was demonstrated by the zero-shot
prompt-based learning performances of GPT-3 in the medical domain. Nonetheless,
prompt-based learning is in full bloom. The pre-train, fine-tune and predict paradigm
is slowly being outpaced by the pre-train, prompt and predict (Liu et al. 2021) leading
to question the place of variational inference in the future of natural language pro-
cessing. However, as the costs of fine-tuning large language models will decrease, we
might expect the fine-tuning paradigm to burgeon again. In that case, we advocate
using VOD to train retrieval-augmented large language models end-to-end, which
might pave the way towards better information systems and result in better search
engines in the process.
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Abstract

With the introduction of the variational autoencoder (VAE), probabilistic latent
variable models have received renewed attention as powerful generative models.
However, their performance in terms of test likelihood and quality of generated
samples has been surpassed by autoregressive models without stochastic units.
Furthermore, flow-based models have recently been shown to be an attractive
alternative that scales well to high-dimensional data. In this paper we close the
performance gap by constructing VAE models that can effectively utilize a deep
hierarchy of stochastic variables and model complex covariance structures. We in-
troduce the Bidirectional-Inference Variational Autoencoder (BIVA), characterized
by a skip-connected generative model and an inference network formed by a bidi-
rectional stochastic inference path. We show that BIVA reaches state-of-the-art test
likelihoods, generates sharp and coherent natural images, and uses the hierarchy of
latent variables to capture different aspects of the data distribution. We observe that
BIVA, in contrast to recent results, can be used for anomaly detection. We attribute
this to the hierarchy of latent variables which is able to extract high-level semantic
features. Finally, we extend BIVA to semi-supervised classification tasks and show
that it performs comparably to state-of-the-art results by generative adversarial
networks.

1 Introduction

One of the key aspirations in recent machine learning research is to build models that understand
the world [24, 40, 11, 57]. Generative models are providing the means to learn from a plethora of
unlabeled data in order to model a complex data distribution, e.g. natural images, text, and audio.
These models are evaluated by their ability to generate data that is similar to the input data distribution
from which they were trained on. The range of applications that come with generative models are
vast, where audio synthesis [55] and semi-supervised classification [38, 31, 44] are examples hereof.
Generative models can be broadly divided into explicit and implicit density models. The generative
adversarial network (GAN) [11] is an example of an implicit model, since it is not possible to procure
a likelihood estimation from this model framework. The focus of this research is instead within
explicit density models, for which a tractable or approximate likelihood estimation can be performed.

The three main classes of powerful explicit density models are autoregressive models [26, 57], flow-
based models [8, 9, 21, 16], and probabilistic latent variable models [24, 40, 33]. In recent years
autoregressive models, such as the PixelRNN and the PixelCNN [57, 45], have achieved superior
likelihood performance and flow-based models have proven efficacy on large-scale natural image
generation tasks [21]. However, in the autoregressive models, the runtime performance of generation
is scaling poorly with the complexity of the input distribution. The flow-based models do not possess
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this restriction and do indeed generate visually compelling natural images when sampling close to
the mode of the distribution. However, generation from the actual learned distribution is still not
outperforming autoregressive models [21, 16].

Probabilistic latent variable models such as the variational auto-encoder (VAE) [24, 40] possess
intriguing properties that are different from the other classes of explicit density models. They
are characterized by a posterior distribution over the latent variables of the model, derived from
Bayes’ theorem, which is typically intractable and needs to be approximated. This distribution
most commonly lies on a low-dimensional manifold that can provide insights into the internal
representation of the data [1]. However, the latent variable models have largely been disregarded as
powerful generative models due to blurry generations and poor likelihood performances on natural
image tasks. [27, 10], amongst others, attribute this tendency to the usage of a similarity metric in
pixel space. Contrarily, we attribute it to the lack of overall model expressiveness for accurately
modeling complex input distributions, as discussed in [59, 41].

There has been much research into explicitly defining and learning more expressive latent variable
models. Here, the complementary research into learning a covariance structure through a framework
of normalizing flows [39, 52, 23] and the stacking of a hierarchy of latent variables [4, 37, 31, 50]
have shown promising results. However, despite significant improvements, the reported performance
of these models has still been inferior to their autoregressive counterparts. This has spawned a new
class of explicit density models that adds an autoregressive component to the generative process of a
latent variable model [14, 5]. In this combination of model paradigms, the latent variables can be
viewed as merely a lossy representation of the input data and the model still suffers from the same
issues as autoregressive models.

Contributions. In this research we argue that latent variable models that are defined in a suf-
ficiently expressive way can compete with autoregressive and flow-based models in terms of test
log-likelihood and quality of the generated samples. We introduce the Bidirectional-Inference Varia-
tional Autoencoder (BIVA), a model formed by a deep hierarchy of stochastic variables that uses
skip-connections to enhance the flow of information and avoid inactive units. To define a flexible
posterior approximation, we construct a bidirectional inference network using stochastic variables
in a bottom-up and a top-down inference path. The inference model is reminiscent to the stochastic
top-down path introduced in the Ladder VAE [50] and IAF VAE [50] with the addition that the
bottom-up pass is now also stochastic and there are no autoregressive components. We perform
an in-depth analysis of BIVA and show (i) an ablation study that analyses the contributions of the
individual novel components, (ii) that the model is able to improve on state-of-the-art results on
benchmark image datasets, (iii) that a small extension of the model can be used for semi-supervised
classification and performs comparably to current state-of-the-art models, and (iv) that the model,
contrarily to other state-of-the-art explicit density models [34], can be utilized for anomaly detection
on complex data distributions.

2 Variational Autoencoders

The VAE is a generative model parameterized by a neural network θ and is defined by an observed
variable x that depends on a hierarchy of stochastic latent variables z = z1, ..., zL so that: pθ(x, z) =
pθ(x|z1)pθ(zL)

∏L−1
i=1 pθ(zi|zi+1). The posterior distribution over the latent variables of a VAE

is commonly analytically intractable, and is approximated with a variational distribution which is
factorized with a bottom-up structure, qϕ(z|x) = qϕ(z1|x)

∏L−1
i=1 qϕ(zi+1|zi), so that each latent

variable is conditioned on the variable below in the hierarchy. The parameters θ and ϕ can be
optimized by maximizing the evidence lower bound (ELBO)

log pθ(x) ≥ Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
≡ L(θ, ϕ) . (1)

A detailed introduction on VAEs can be found in appendix A in the supplementary material. While a
deep hierarchy of latent stochastic variables will result in a more expressive model, in practice the top
stochastic latent variables of standard VAEs have a tendency to collapse into the prior. The Ladder
VAE (LVAE) [50] is amongst the first attempts towards VAEs that can effectively leverage multiple
layers of stochastic variables. This is achieved by parameterizing the variational approximation with
a bottom-up deterministic path followed by a top-down inference path that shares parameters with
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Figure 1: A L = 3 layered BIVA with (a) the generative model and (b) inference model. Blue arrows
indicate that the deterministic parameters are shared between the inference and generative models.
See Appendix B for a detailed explanation and a graphical model that includes the deterministic
variables.

the top-down structure of the generative model: qϕ,θ(z|x) = qϕ(zL|x)
∏L−1

i=1 qϕ,θ(zi|zi+1, x). See
Appendix A for a graphical representation of the LVAE inference network. Thanks to the bottom-
up path, all the latent variables in the hierarchy have a deterministic dependency on the observed
variable x, which allows data-dependent information to skip all the stochastic variables lower in the
hierarchy (Figure 5d in Appendix A). The stochastic latent variables that are higher in the hierarchy
will therefore receive less noisy inputs, and will be empirically less likely to collapse. Despite the
improvements obtained thanks to the more flexible inference network, in practice LVAEs with a very
deep hierarchy of stochastic latent variables will still experience variable collapse. In the next section
we will introduce the Bidirectional-Inference Variational Autoencoder, that manages to avoid these
issues by extending the LVAE in 2 ways: (i) adding a deterministic top-down path in the generative
model and (ii) defining a factorization of the latent variables zi at each level of the hierarchy that
allows to construct a bottom-up stochastic inference path.

3 Bidirectional-Inference Variational Autoencoder

In this section, we will first describe the architecture of the Bidirectional-Inference Variational
Autoencoder (Figure 1), and then provide the motivation behind the main ideas of the model as well
as some intuitions on the role of each of its novel components. Finally, we will show how this model
can be used for a novel approach to detecting anomalous data.

3.1 Model architecture

Generative model. In BIVA, at each layer 1, ..., L− 1 of the hierarchy we split the latent variable
in two components, zi = (zBU

i , zTD
i ), which belong to a bottom-up (BU) and top-down (TD) inference

path, respectively. More details on this will be given when introducing the inference network. The
generative model of BIVA is illustrated in Figure 1a. We introduce a deterministic top-down path
dL−1, . . . , d1 that is parameterized with neural networks and receives as input at each layer i of the
hierarchy the latent variable zi+1. In the case of a convolutional model, this is done by concatenating
(zBU

i+1, zTD
i+1) and di+1 along the features’ dimension. di can therefore be seen as a deterministic

variable that summarizes all the relevant information coming from the stochastic variables higher
in the hierarchy, z>i. The latent variables zBU

i and zTD
i are conditioned on all the information in the

higher layers, and are conditionally independent given z>i. The joint distribution of the model is then
given by:

pθ(x, z) = pθ(x|z)pθ(zL)
L−1∏
i=1

pθ(z
BU
i |z>i)pθ(z

TD
i |z>i) ,

where θ are the parameters of the generative model. The likelihood of the model pθ(x|z) directly
depends on z1, and depends on z>1 through the deterministic top-down path. Each stochastic latent
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variable 1, ..., L is parameterized by a Gaussian distribution with diagonal covariance, with one neural
network µ(·) for the mean and another neural network σ(·) for the variance. Since the zBU

i+1 and zTD
i+1

variables are on the same level in the generative model and of the same dimensionality, we share all
the deterministic parameters going to the layer below. See Appendix B for details.

Bidirectional inference network. Due to the non-linearities in the neural networks that param-
eterize the generative model, the exact posterior distribution pθ(z|x) is intractable and needs to
be approximated. As for VAEs, we therefore define a variational distribution, qϕ(z|x), that needs
to be flexible enough to approximate the true posterior distribution, as closely as possible. We
define a bottom-up (BU) and a top-down (TD) inference path, which are computed sequentially
when constructing the posterior approximation for each data point x, see Figure 1b. The variational
distribution over the BU latent variables depends on the data x and on all BU variables lower in the
hierarchy, i.e. qϕ(zBU

i |x, zBU
<i), where ϕ denotes all the parameters of the BU path. zBU

i has a direct
dependency only on the BU variable below, zBU

i−1. The dependency on zBU
<i−1 is achieved, similarly to

the generative model, through a deterministic bottom-up path d̃1, . . . , d̃L−1.

The TD variables depend on the data and the BU variables lower in the hierarchy through the BU
inference path, but also on all variables above in the hierarchy through the TD inference path, see
Figure 1b. The variational approximation over the TD variables is thereby qϕ,θ(z

TD
i |x, zBU

<i, z
BU
>i, z

TD
>i).

Importantly, all the parameters of the TD path are shared with the generative model, and are therefore
denoted as θ. The overall inference network can be factorized as follows:

qϕ(z|x) = qϕ(zL|x, zBU
<L)

L−1∏
i=1

qϕ(z
BU
i |x, zBU

<i)qϕ,θ(z
TD
i |x, zBU

<i, z
BU
>i, z

TD
>i) ,

where the variational distributions over the BU and TD latent variables are Gaussians whose mean
and diagonal covariance are parameterized with neural networks that take as input the concatenation
over the feature dimension of the conditioning variables. Training of BIVA is performed, as for VAEs,
by maximizing the ELBO in eq. (1) with stochastic backpropagation and the reparameterization trick.

3.2 Motivation

BIVA can be seen as an extension of the LVAE in which we (i) add a deterministic top-down path and
(ii) apply a bidirectional inference network. We will now provide the motivation and some intuitions
on the role of these two novel components, that will then be empirically validated with the ablation
study of Section 4.1.

Deterministic top-down path. Skip-connections represent one of the simplest yet most powerful
advancements of deep learning in recent years. They allow constructing very deep neural networks,
by better propagating the information throughout the model and reducing the issue of vanishing
gradients. Skip connections form for example the backbone of deep neural networks such as ResNets
[15], which have shown impressive performances on a wide range of classification tasks. Our goal
in this paper is to build very deep latent variable models that are able to learn an expressive latent
hierarchical representation of the data. In our experiments, we however found that the LVAE still had
difficulties in activating the top latent variables for deeper hierarchies. To limit this issue, we add skip
connections among the latent variables in the generative model by adding the deterministic top-down
path, that makes each variable depend on all the variables above in the hierarchy (see Figure 1a for a
graphical representation). This allows a better flow of information in the model and thereby avoids
the collapse of latent variables. A related idea was recently proposed by [7], that add skip connections
among the neural network layers parameterizing a shallow VAE with a single latent variable.

Bidirectional inference. The inspiration for the bidirectional inference network of BIVA comes
from the work on Auxiliary VAEs (AVAE) by [37, 31]. An AVAE can be viewed as a shallow VAE
with a single latent variable z and an auxiliary variable a that increases the expressiveness of the
variational approximation qϕ(z|x) =

∫
qϕ(z|a, x)qϕ(a|x)da. By making the inference network

qϕ(z|a, x) depend on the stochastic variable a, the AVAE adds covariance structure to the posterior
approximation over the stochastic unit z, since it no longer factorizes over its components z(k), i.e.
qϕ(z|x) ̸=

∏
k qϕ(z

(k)|x). As discussed in the following, by factorizing the latent variables at each
level of the hierarchy of BIVA we are able to achieve similar results without introducing additional
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auxiliary variables in the model. To see this, we can focus for example on the highest latent variable
zL. In BIVA, the presence of the zBU

i variables makes the bottom-up inference path stochastic, as
opposed to the deterministic BU path of the LVAE. While the conditional distribution qϕ(zL|x, zBU

<L)
still factorizes over the components of zL, due to the stochastic BU variables the marginal distribution
over zL no longer factorizes, i.e. qϕ(zL|x) =

∫
qϕ(zL|x, zBU

<L)qϕ(z
BU
<L|x)dzBU

<L ̸=
∏K

k=1 q(z
(k)
L |x) .

Therefore, the BU inference path enables the learning of a complex covariance structure in the higher
TD stochastic latent variables, which is fundamental in the model to extract good high-level semantic
features from the data distribution. Notice that, in BIVA, only zBU

1 will have a marginally factorizing
inference network.

3.3 Anomaly detection with BIVA

Anomaly detection is considered to be one of the most important applications of explicit density
models. However, recent empirical results suggest that these models are not able to distinguish
between two clearly distinctive data distributions [34], as they can assign a higher likelihood to data
points from a data distribution that is very different from the one the model was trained on. Based on
a thorough study, [34] states that the main issue is the fact that explicit density models tend to capture
low-level statistics, as opposed to the high-level semantics that are preferable when doing anomaly
detection. We hypothesize that the latent representations in the higher layers of BIVA can capture the
high-level semantics of the data and that these can be used for improved anomaly detection.

In the standard ELBO from eq. (1), the main contribution to the expected log-likelihood term is
coming from averaging over the variational distribution of the lower level latent variables. This
will thus emphasize low-level statistics. So in order to perform anomaly detection with BIVA we
instead need to emphasize the contribution from the higher layers. We can achieve this introducing
an alternative score function inspired by the ELBO that partly replaces the inference network with
the generative model, and uses therefore the generative hierarchy of the stochastic variables. In
the following we define the hierarchy of stochastic latent variables as z = z1, z2, z3, ..., zL with
zi = (zBU

i , zTD
i ). Instead of using as in the standard ELBO the variational approximation qϕ(z|x)

over all stochastic variables in the model, we use the prior distribution for the first k layers and the
variational approximation from the inference network for the others, i.e. pθ(z≤k|z>k)qϕ(z>k|x, zBU

≤k).
In the computation of qϕ(z>k|x, zBU

≤k) we use samples zBU
≤k from the inference network. Using this

alternative distribution instead of qϕ(z|x) in the ELBO in eq. (1), we define the score function for
anomaly detection as:

L>k = Epθ(z≤k|z>k)qϕ(z>k|x,zBU
≤k

)

[
log

pθ(x|z)pθ(z>k)

qϕ(z>k|x, zBU
≤k)

]
. (2)

L>0 = L is the ELBO in eq. (1). As for the ELBO, we approximate the computation of L>k

with Monte Carlo integration. Sampling from pθ(z≤k|z>k)qϕ(z>k|x, zBU
≤k) can be easily performed

by obtaining samples ẑ>k from the inference network, that are then used to sample ẑ≤k from the
conditional prior pθ(z≤k|ẑ>k).

L>k with higher values of k represents a useful metric for anomaly detection, as shown empirically
in the experiments of Section 4.4. By only sampling the top L − k variables from the variational
approximation, in fact, we are forcing the model to only rely on the high-level semantics encoded in
the highest variables of the hierarchy when evaluating this metric, and not on the low-level statistics
encoded in the lower variables.

4 Experiments

BIVA is empirically evaluated by (i) an ablation study analyzing each novel component, (ii) likelihood
and semi-supervised classification results on binary images, (iii) likelihood results on natural images,
and (iv) an analysis of anomaly detection in complex data distributions. We employ a free bits strategy
with λ = 2 [23] for all experiments to avoid latent variable collapse during the initial training epochs.
Trained models are reported with 1 importance weighted sample, L1, and 1000 importance weighted
samples, L1e3 [3]. We evaluate the natural image experiments by bits per dimension (bits/dim),
L/(hwc log(2)), where h, w, c denote the height, width, and channels respectively. For a detailed
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(a) LVAE L = 15 (b) LVAE+ L = 15 (c) BIVA L = 15

Figure 2: The logKL(q||p) for each
stochastic latent variable as a function of
the training epochs on CIFAR-10. (a) is
a L = N = 15 stochastic latent layer
LVAE with no skip-connections and no
bottom-up inference. (b) is a L = N =
15 LVAE+ with skip-connections and no
bottom-up inference. (c) is a L = 15
stochastic latent layer (N = 29 latent
variables) BIVA for which 1, 2, ..., N de-
notes the stochastic latent variables fol-
lowing the order zBU

1 , z
TD

1 , z
BU

2 , z
TD

2 , ..., zL.

Figure 3: (left) images from the CelebA dataset preprocessed to 64x64 following [27]. (right) N (0, I)
generations of BIVA with L = 20 layers that achieves a L1 = 2.48 bits/dim on the test set.

description of the experimental setup see Appendix C and the source code12. In Appendix D we test
BIVA on complex 2d densities, while Appendix E presents initial results for the model on text.

4.1 Ablation Study

BIVA can be viewed as an extension of the LVAE from [50] where we add (i) extra dependencies in the
generative model (pθ(x|z1) → pθ(x|z) and pθ(zi|zi+1) → pθ(zi|z>i)) through the skip connections
obtained with the deterministic top-down path and (ii) a bottom-up (BU) path of stochastic latent
variables to the inference model. In order to evaluate the effects of each added component we define
an LVAE with the exact same architecture as BIVA, but without the BU variables and the deterministic
top-down path. Next, we define the LVAE+, where we add to the LVAE’s generative model the
deterministic top-down path. It is therefore the same model as in Figure 1 but without the BU variables.
Finally, we investigate a LVAE+ model with 2L− 1 stochastic layers. This corresponds to the depth
of the hierarchy of the BIVA inference model x → zBU

1 → · · · → zBU

L−1 → zL → zTD

L−1 → · · · → zTD

1 .
If this model is competitive with BIVA then it is an indication that it is the depth that determines the
performance. The ablation study is conducted on the CIFAR-10 dataset against the best reported
BIVA with L = 15 layers (Section 4.3), which means 2L − 1 = 29 stochastic latent layers in the
deep LVAE+.

Table 1: A comparison of the LVAE with
no skip-connections and no bottom-up infer-
ence, the LVAE+ with skip-connections and
no bottom-up inference, and BIVA. All mod-
els are trained on the CIFAR-10 dataset.

PARAM. BITS/DIM
LVAE L=15, L1 10.85M ≤ 3.60
LVAE+ L=15, L1 11.36M ≤ 3.41
LVAE+ L=29, L1 21.99M ≤ 3.45
BIVA L=15, L1 18.48M ≤ 3.12

Table 1 presents a comparison of the different model
architectures. The positive effect of adding the skip
connections in the generative models can be evalu-
ated from the difference between the LVAE L = 15
and LVAE+ L = 15 results, for which there is close
to a 0.2 bits/dim difference in the ELBO. Thanks to
the more expressive posterior approximation obtained
using its bidirectional inference network, BIVA im-
proves the ELBO significantly w.r.t the LVAE+, by
more than 0.3 bits/dim. Notice that a deeper hierar-
chy of stochastic latent variables in the LVAE+ will
not necessarily provide a better likelihood performance, since the LVAE+ L = 29 performs worse
than the LVAE+ L = 15 despite having significantly more parameters. In Figure 2 we plot for LVAE,
LVAE+ and BIVA the KL divergence between the variational approximation over each latent variable

1Source code (Tensorflow): https://github.com/larsmaaloee/BIVA.
2Source code (PyTorch): https://github.com/vlievin/biva-pytorch.
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Table 2: Test log-likelihood on statically bina-
rized MNIST for different number of importance
weighted samples. The finetuned models are
trained for an additional number of epochs with
no free bits, λ = 0. For testing resiliency we
trained 4 models and evaluated the standard de-
viations to be ±0.031 for L1.

− log p(x)
With autoregressive components
PIXELCNN [57] = 81.30
DRAW [13] < 80.97
IAFVAE [23] ≤ 79.88
PIXELVAE [14] ≤ 79.66
PIXELRNN [57] = 79.20
VLAE [5] ≤ 79.03
Without autoregressive components
DISCRETE VAE [42] ≤ 81.01

BIVA, L1 ≤ 81.20
BIVA, L1e3 ≤ 78.67
BIVA FINETUNED, L1 ≤ 80.47
BIVA FINETUNED, L1e3 ≤ 78.59

Table 3: Semi-supervised test error for BIVA on
MNIST for 100 randomly chosen and evenly dis-
tributed labelled samples.

ERROR %

M1+M2 [22] 3.33% (±0.14)
VAT [32] 2.12%
CATGAN [51] 1.91% (±0.10)
SDGM [31] 1.32% (±0.07)
LADDERNET [38] 1.06% (±0.37)
ADGM [31] 0.96% (±0.02)
IMPGAN [44] 0.93% (±0.07)
TRIPLEGAN [29] 0.91% (±0.58)
SSLGAN [6] 0.80% (±0.10)

BIVA 0.83% (±0.02)

Figure 4: Histograms and kernel density estima-
tion of the L>k for k = 13, 11, 0 evaluated in
bits/dim by a model trained on the CIFAR-10
train dataset and evaluated on the CIFAR-10 and
the SVHN test set.

Table 4: Test log-likelihood on CIFAR-10 for dif-
ferent number of importance weighted samples.
We evaluated two different BIVA with various
number of layers (L). For testing resiliency we
trained 3 models and evaluated the standard de-
viations to be ±0.013 for L1 and L = 15.

BITS/DIM
With autoregressive components
CONVDRAW [12] < 3.58
IAFVAE L1 [23] ≤ 3.15
IAFVAE L1e3 [23] ≤ 3.12
GATEDPIXELCNN [56] = 3.03
PIXELRNN [57] = 3.00
VLAE [5] ≤ 2.95
PIXELCNN++ [45] = 2.92
Without autoregressive components
NICE [8] = 4.48
DEEPGMMS [58] = 4.00
REALNVP [9] = 3.49
DISCRETEVAE++ [54] ≤ 3.38
GLOW [21] = 3.35
FLOW++ [16] = 3.08

BIVA L=10, L1 ≤ 3.17
BIVA L=15, L1 ≤ 3.12
BIVA L=15, L1e3 ≤ 3.08

and its prior distribution, KL(q||p). This KL divergence is 0 when the two distributions match, in
which case we say that the variable has collapsed, since its posterior approximation is not using
any data-dependent information. We can see that while the LVAE is only able to utilize its lowest 7
stochastic variables, all variables in both LVAE+ and BIVA are active. We attribute this tendency
to the deterministic top-down path that is present in both models, which creates skip-connections
between all latent variables that allow to better propagate the information throughout the model.

4.2 Binary Images

We evaluate BIVA L = 6 in terms of test log-likelihood on statically binarized MNIST [43],
dynamically binarized MNIST [28] and dynamically binarized OMNIGLOT [25]. The model param-
eterization and optimization parameters have been kept identical for all binary image experiments
(see Appendix C). For each experiment on binary image datasets, we finetune each model by setting
the free bits to λ = 0 until convergence in order to test the tightness of the L1 ELBO.

To the best of our knowledge, BIVA achieves state-of-the-art results on statically binarized MNIST,
outperforming other latent variable models, autoregressive models, and flow-based models (see Table
2). Finetuning the model with λ = 0 improves the L1 ELBO significantly and achieves slightly
better performance for the 1000 importance weighted samples. For dynamically binarized MNIST
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L>L−2 L>L−4 L>L−6 L>0

Model trained on CIFAR-10:
CIFAR-10 79.36 35.34 20.93 3.12
SVHN 121.04 58.82 26.76 2.28
Model trained on FashionMNIST:
FASHIONMNIST 228.38 107.07 - 94.05
MNIST 295.95 130.39 - 128.60

Table 5: The test L>k

for different values of
k and train/test dataset
combinations evaluated
in bits/dim for natural
images and negative log-
likelihood for binary im-
ages (lower is better).

and OMNIGLOT, BIVA achieves similar improvements with L1e3 = 78.41 (state-of-the-art) and
L1e3 = 91.34 respectively, see Tables 10 and 11 in Appendix G.

Semi-supervised learning. BIVA can be easily extended for semi-supervised classification by
adding a categorical variable y to represent the class, as done in [22]. We add a classification
model qϕ(y|x, zBU

<L) to the inference network, and a class-conditional distribution pθ(x|z, y) to the
generative model (see Appendix F for a detailed description). We train 5 different semi-supervised
models on MNIST, each using a different set of just 100 randomly chosen and evenly distributed
MNIST labels. Table 3 presents the classification results on the test set (mean and standard deviation
over the 5 runs), that shows that BIVA achieves comparable performance to recent state-of-the-art
results by generative adversarial networks.

4.3 Natural Images

We trained and evaluated BIVA L = 15 on 32x32 CIFAR-10, 32x32 ImageNet [57], and another
BIVA L = 20 on 64x64 CelebA [27]. For the output decoding, we employ the discretized logistic
mixture likelihood from [45] (see Appendix C for more details). In Table 4 we see that for the
CIFAR-10 dataset BIVA outperforms other state-of-the-art non-autoregressive models and performs
slightly worse than state-of-the-art autoregressive models. Notice that BIVA has fewer parameters
(18.48M) than PixelCNN++ (28.57M parameters, [45]). For the 32x32 ImageNet dataset BIVA
achieves better performance than flow-based models, but the performance gap to the autoregressive
models remains large (Table 13 in Appendix G). This may be due to the added complexity (more
categories) of the 32x32 ImageNet dataset, requiring an even more flexible model. More research
should be invested in defining an improved architecture for BIVA that holds more parameters and
thereby achieves better performances.

Figure 3 shows generated samples from the N (0, I) prior of a BIVA L = 20 trained on the CelebA
dataset. From a visual inspection, the samples are far superior to previous natural image generations
by latent variable models. We believe that previous claims stating that this type of model can only
generate blurry images should be disregarded [27]. Rather the limited expressiveness/flexibility of
previous models should be blamed. Additional samples from BIVA can be found in Appendix G.

4.4 Does BIVA know what it doesn’t know?

We test the anomaly detection capabilities of BIVA replicating the most challenging experiments of
[34]. We train BIVA L = 15 on the CIFAR-10 dataset, and evaluate eq. (2) for various values of k on
the CIFAR-10 test set, the SVHN dataset [35] and the CelebA dataset. The results can be found in
Table 5 and Figure 4, and are reported in terms of bits per dimension (lower is better). We see that for
k = 0, corresponding to the standard ELBO, BIVA wrongly assigns lower values to data points from
SVHN. This is in line with the results obtained with other explicit density models in [34], and shows
that by using the standard ELBO the low-level image statistics prevail and the model is not able to
correctly detect out-of-distribution samples. However, for higher values of k, the situation is reversed.
We take this as an indication that BIVA uses the high-level semantics inferred from the data to better
differentiate between the CIFAR-10 and the SVHN/CelebA distributions. We repeat the experiment
training BIVA L = 6 on the FashionMNIST dataset (Table 5), and testing on the FashionMNIST test
set and the MNIST dataset. Unlike the flow-based models used in [34], BIVA is able to learn a data
distribution that can be used to detect anomalies with the standard ELBO (but also k > 0).
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5 Conclusion

In this paper, we have introduced BIVA, that significantly improves performances over previously
introduced probabilistic latent variable models and flow-based models. BIVA is able to generate natu-
ral images that are both sharp and coherent, to improve on semi-supervised classification benchmarks
and, contrarily to other models, allows for anomaly detection using the extracted high-level semantics
of the data.
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A Deep Learning and Variational Inference
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Figure 5: (a) Generative model of a VAE/LVAE
with L = 3 stochastic variables, (b) VAE inference
model, (c) LVAE inference model, and (d) skip con-
nections among stochastic variables in the LVAE
where dashed lines denote a skip-connection. Blue
arrows indicate that there are shared parameters
between the inference and generative model.

The introduction of stochastic backpropagation
[36, 18] and the variational auto-encoder (VAE)
[24, 40] has made approximate Bayesian infer-
ence and probabilistic latent variable models
applicable to machine learning problems consid-
ering complex data distributions, e.g. natural
images, audio, and text. The VAE is a gen-
erative model parameterized by a neural net-
work θ and is defined by an observed variable
x that depends on a hierarchy of stochastic la-
tent variables z = z1, ..., zL so that: pθ(x, z) =
pθ(x|z1)pθ(zL)

∏L−1
i=1 pθ(zi|zi+1). This is il-

lustrated in Figure 5a.

The distributions pθ(zi|zi+1) over the latent
variables of the VAE are normally defined as
Gaussians with diagonal covariance, whose pa-
rameters depend on the previous latent vari-
able in the hierarchy (with the top latent vari-
able pθ(zL) = N (zL; 0, I)). The likelihood
pθ(x|z1) is typically a Gaussian distribution for
continuous data, or a Bernoulli distribution for
binary data.

In order to learn the parameters θ we seek to maximize the log marginal likelihood over a training set:∑
i log pθ(xi) =

∑
i log

∫
pθ(xi, zi)dzi. However, complex data distributions require an expressive

model, which makes the above integral intractable. In order to circumvent this, we use Variational
Inference [19] and introduce a posterior approximation qϕ(z|x), known as inference network or
encoder, that is parameterized by a neural network ϕ. Using Jensen’s inequality we can derive the
evidence lower bound (ELBO), a lower bound to the integral in the marginal likelihood which is a
function of the variational approximation qϕ(z|x) and the generative model pθ(x, z):

log pθ(x) ≥ Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
≡ L(θ, ϕ) . (3)

The parameters θ and ϕ can be optimized by maximizing the ELBO with stochastic backpropagation
and the reparameterization trick, which allows using gradient ascent algorithms with low variance
gradient estimators [24, 40]. As illustrated in Figure 5b, in a VAE the variational approximation
is factorized with a bottom-up structure, qϕ(z|x) = qϕ(z1|x)

∏L−1
i=1 qϕ(zi+1|zi), so that each latent

variable is conditioned on the variable below in the hierarchy. For ease of computation, all the factors
in the variational approximation are typically assumed to be Gaussians whose mean and diagonal
covariance are parameterized by neural networks.

Latent variable collapse in VAEs. A deep hierarchy of latent stochastic variables will result in a
more expressive model. However, the additional variables come at a price. As shown in [5, 30], we
can rewrite the ELBO (eq. (1)):

L(θ, ϕ) = Eqϕ(z|x)

[
log

pθ(x, z<L|zL)
qϕ(z<L|x)

]
− Eqϕ(z<L|x) [KL[qϕ(zL|z<L)||pθ(zL))]] .

From the above, it becomes obvious that, during the optimization of the VAE, the top stochastic latent
variables may have a tendency to collapse into the prior, i.e. qϕ(zL|z<L) = pθ(zL) = N (zL; 0, I),
if the model pθ(x, z<L|zL) is powerful enough. This is supported by empirical results in [50, 2]
amongst others. The tendency has limited the applicability of deep VAEs in problems with complex
data distributions, and has pushed VAE research towards the extension of shallow VAEs with
autoregressive models, that allow capturing a lossy representation in the latent space while achieving
strong generative performances [14, 5]. Another research direction has focused on learning more
complex prior distributions through normalizing flows [39, 52, 23]. Our research considers instead
the original goal of building expressive models that can exploit a deeper hierarchy of stochastic latent
variables while avoiding variable collapse.
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Figure 6: A L = 3 layered BIVA with (a) the generative model, (b) bottom-up (BU) inference path,
(c) top-down (TD) inference path, and (d) variable dependency of the generative models where dashed
lines denote a skip-connection. Blue arrows indicate that the deterministic parameters are shared
within the generative model or between the generative and inference model.

B Detailed Model Description

Generative model. The generative model (see Figure 6a) has a top-down path going from zL
through the intermediary stochastic latent variables to x. Between each stochastic layer there is a
ResNet block with M layers set up similarly to [45]. Weight normalization [46] is applied in all
neural network layers. In the generative model, the BU and TD units are not distinguished so we write
zi = (zBU

i , zTD
i ). We use fi,j to denote the neural network function (a function of generative model

parameters θ) of ResNet layer j associated with stochastic layer i. The feature maps are written as
di,j . The generative process can then be iterated as zL ∼ N (0, I) and i = L− 1, L− 2, . . . , 1:

di,0 = zi+1 (4)
di,j =< fθi,j (di,j−1); di+1,j > for j = 1, ...,M (5)

zi = µθ,i(di,M ) + σθ,i(di,M )⊗ ϵi , (6)

where dL,j = 0, <;> denotes concatenation of feature maps in the convolutional network and hidden
units in the fully connected network, ϵ ∼ N (0, I) and µ(·) and σ(·) are parameterized by neural
networks. To complete the generative model p(x|z) is written in terms of z1 and d1 through a ResNet
block f0.

Inference model. The inference model (see Figure 6b and 6c) consists of a bottom-up (BU) and top-
down (TD) paths such that bottom-up stochastic units only receive bottom-up information whereas
the top-down units receive both bottom-up and top-down information. The top-down path shares
parameters with the generative model. For each stochastic latent variable zi in i = 1, ..., L we use a
ResNet block with M layers and there are associated neural network functions gi,j , j = 1, . . . ,M
with parameters collectively denoted by ϕ. The deterministic feature map of layer i, j is denoted by
d̃i,j :

d̃i,0 =

{
x i = 1

< zi−1; d̃i−1,M > otherwise
(7)

d̃i,j =< gi,j(d̃i,j−1); d̃i−1,j > for j = 1, ...,M , (8)

zBU
i = µBU

i (d̃i,M ) + σBU
i (d̃i,M )⊗ ϵBU

i (9)

where ϵ ∼ N (0, I). Finally, to infer the top-down latent we use the bottom-up latent zTD
i inferred in

eq. (9) and pass them through the generative path eq. (5) for i = L− 1, L− 2, . . . , 2 to determine
di,M and

zTD
i = µTD

i (< d̃i,M ; di,M >) + σTD
i (< d̃i,M ; di,M >)⊗ ϵTD

i . (10)
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C Experimental Setup

Throughout all experiments, we follow the BIVA model description that is described in detail in
Appendix B and F.

Optimization. All models are optimized using Adamax [20] with a hyperparameter setting similar
to the one used in [23]. They are trained with a batch-size of 48 where the binary image experiments
are trained on a single GPU and the natural image experiments are trained on two GPUs (by splitting
the batch in 2 and then taking the mean over the gradients). For evaluation, we use exponential
moving averages of the parameters space, similar to [23, 45].

Binary image architecture. BIVA has L = 6 layers. The gϕ1
neural networks are defined by

M = 3, 64x5x5 (number of kernels x kernel width x kernel height) convolutional layers and an
overall stride of 2. Neural networks i = 2, ..., 6 are defined by four M = 3, 64x3x3 convolutional
layers. The final neural network, i = 6, applies a stride of 2. All stochastic latent variables are densely
connected layers of dimension 48, 40, 32, 24, 16, 8 for 1, ..., L respectively. We apply a dropout rate
of 0.5 for both the deterministic layers in the generative as well as the inference model.

Natural image architecture (32x32). BIVA has L = 15 layers. The gϕ1 neural networks are
defined by M = 3, 96x5x5 convolutional layers and an overall stride of 2. Neural networks
i = 2, ..., 15 are defined by M = 3, 96x3x3 convolutional layers. Neural networks 11 and 15 are
defined with a stride of 2. All stochastic latent variables are parameterized by convolutional layers
with 38, 36, 34, ..., 10 feature maps for 1, 2, 3, ..., L respectively. The kernel width and height of
the stochastic latent variables are defined similarly to the dimension of the subsequent output after
striding. We apply a dropout rate of 0.2 in the deterministic layers of the inference model.

Natural image architecture (64x64). BIVA has L = 20 layers. The gϕ1
and gϕ2

neural networks
are defined by M = 3, 64x7x7 and 64x5x5 convolutional layers respectively with a stride of 2 in
each. Neural networks i = 3, ..., 11 are defined by M = 3 64x3x3 convolutional layers. Neural
network 11 is defined with a stride of 2. Neural networks i = 12, ..., 20 are defined by M = 3,
128x3x3 convolutional layers and network 20 has a stride of 2. All stochastic latent variables are
parameterized by convolutional layers with 20, 19, 18, ..., 1 feature maps for 1, 2, 3, ..., L respectively.
The kernel width and height of the stochastic latent variables are defined similarly to the dimension
of the subsequent output after striding. We apply a dropout rate of 0.2 in the deterministic layers of
the inference model.

D Modeling Complex 2D Densities

POTENTIAL U(Z)

1: 1
2

(
∥z∥−2
0.4

)2

− ln

(
e
− 1

2

[
Z1−2
0.6

]2
+ e

− 1
2

[
Z1+2
0.6

]2
)

)
2: 1

2

[
Z2−w1(Z)

0.4

]2
3: − ln

(
e−

1
2

[
Z2−w1(Z)

0.35

]2
+ e

− 1
2

[
Z2−w1(Z)+w2(Z)

0.35

]2
)

)
4: − ln

(
e
− 1

2

[
Z2−w1(Z)

0.4

]2
+ e

− 1
2

[
Z2−w1(Z)+w3(Z)

0.35

]2
)

)
WITH w1(z) = sin

(
2πz1

4

)
, w2(z) = 3e

− 1
2

[
(Z1−1)

0.6

]2
,

w3(z) = 3σ
(
Z1−1
0.3

)
AND σ(x) = 1/

(
1 + e−x

)
.

Table 6: Potentials defining the target densities p(z) = e−U(z)

Z .

Problem. [31] showed that Variational Auto-Encoders can fit complex posterior distributions for
the latent space using the inference model qϕ(z|x), parameterized as a fully factorized Gaussian
and p(x) being a simple diagonal Gaussian. In table 6, we define complex non-Gaussian densities
using a potential model U(Z), as described in [39]. While modeling such distributions remains
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within the reach of an adequately complex Variational Autoencoder, optimizing such a model remains
challenging.

Objective. Similarly to [31], we choose p(x) to be an isotropic Gaussian and we model the target
density using the top stochastic variable: p(zL) = eU(z)

Z . This results in the following bound:

logZ ≥ Eqϕ(x,z)

[
U(zL) + log

pθ(x|z1)
qϕ(x)

+

L−1∑
i=1

log
pθ(zi|zi+1)

qϕ(zi,TD|zi+1, x)qϕ(zi+1|zi,BU , x)

]
. (11)

Experimental Setup. We test BIVA against the VAE and LVAE models using the same number
of stochastic variables, hence the models use the same number of intermediate layers. All models
are implemented using 5 stochastic layers, MLPs with one hidden layer of size 128 and with
residual connections. The chosen architecture is voluntary kept minimal, therefore the task remains
challenging for all models.

We train all models for 1e4 iterations using the Adamax optimizer. We use batch sizes of size 512.
The potential is linearly annealed from 0.1 to 1 during 5e3 steps. In order to avoid posterior collapse,
0.5 freebits are applied to each stochastic layer. The learning rate is linearly increased from 1e−5 to
3e−3 and exponentially annealed back to 1e−5.

In order to measure the quality of the posterior density, we estimate KL(q(zL)||p(zL)) using 1e6

posterior samples evaluated using a grid of size (−2, 2)2 with a resolution of 100× 100. Each model
is trained 100 times for each density.

Results. According to the approximate KL(q(zL)||p(zL)), we found that BIVA tends to learn a
posterior that lies closer to the target density. Figure 7 shows that BIVA often learns more complex
features than the baseline models, which posteriors remain closer to the modes. Figure 7 reveals
that LVAE is able to find solutions that are competitive with the best BIVA samples according to
KL(q(zL)||p(zL)). However, this happens very rarely whereas BIVA has a more robust optimization
behaviour.

Figure 7: Distribution of the KL(q(zL)||p(zL))) estimate for each model, each target density p(zL)
and for different initial random seeds. We collected 100 runs for each model and for each density. We
found that BIVA behaves more consistently and often yield better approximations than the baseline
models.

E Initial Results on Text Generation Tasks

Optimizing generative models coupled with autoregressive models is a difficult task. Such coupling
causes the posterior to collapse, and the latent variables are ignored. Nonetheless, autoregressive
components remain a cornerstone of the generative models for text [2, 48, 49]. In order to enforce
the model to use the latent variable, previous efforts aimed at weakening the decoder using powerful
regularizing tricks, such as word dropout [2]. We investigate the use of BIVA in the context of
sentence modeling without weakening the decoder. We show that it allows optimizing the latent
variables more effectively, resulting in a higher measured KL when compared to the RNN-VAE [2]
and the Hybrid VAE [48].

Dataset. We use the Bookcorpus dataset [60] of sentences of maximum 40 words, no preprocessing
is performed and sentences are tokenized using the white spaces. We defined a vocabulary of 20000
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Figure 8: Target densities p(zL) and the median posterior distributions q(zL) for each model according
to KL(q(zL)||p(zL))) out of 100 runs for each model and for each density.

PARAMETERS − log p(x) KL PPL
Results with autoregressive components, no dropout
LSTM 15.0M = 41.49 − 36.28
RNN-VAE [2], L1 , WARMUP 23.7M ≤ 42.09 1.61 38.21
RNN-VAE [2], L1 , FINETUNED 23.7M ≤ 42.41 5.13 39.26
HYBRID VAE [48], L1 , FINETUNED 23.7M ≤ 42.24 4.67 38.70
BIVA L=7, L1 , FINETUNED 23.0M ≤ 42.34 10.15 39.04
Results without autoregressive components, no dropout
HYBRID VAE [48], L1 , FINETUNED 15.0M ≤ 54.53 14.10 112.1
BIVA L=7 FINETUNED, L1 14.0M ≤ 54.13 15.33 108.3

Table 7: Test performances on the BookCorpus with 1 importance weighted sample (sentences
limited to 40 words). The RNN-VAE and Hybrid VAE are are trained and evaluated from our own
implementation.

words and filtered out the sentences that contain non-indexed tokens. We randomly sampled 10000
sentences for testing and used the remaining 56M sentences for training.

Models. We couple BIVA with an LSTM decoder, using the output of the convolutional model as
an input sequence for the auto-regressive model. We compare our model against a LSTM language
model [17], the RNN-VAE [2], and the Hybrid VAE [48], which couples a convolutional architecture
with an LSTM decoder. We also perform experiments without using autoregressive components.

All LSTM models are parameterized by 1024 units and we use embeddings of dimension 512. This
results in an RNN-VAE model with 23.7M parameters and we limit the other models to use the same
total number of parameters. This results in using a limited number of stochastic layers for the BIVA
and small a small number of kernels of 128.
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Training. We trained the models for 5 epochs with an initial learning rate of 2e−3 using the Adamax
optimizer. We used batches of size 512 and used only one stochastic sample. We train all latent
variable models using the freebits method from [23] with an initial KL budget of 30 nats distributed
equally over the stochastic variables and we incrementally decrease the freebits value on plateau. We
also train the RNN-VAE baseline using the deterministic warmup method [2, 50] for comparison.

Likelihood and latent variables usage. We report the test set results in table 7 and test samples in
8 and reconstructions in table 9. While BIVA without the autoregressive decoder is not competitive
with an LSTM language model, we observe that replacing the LSTM inference model by a BIVA
model allows exploiting the latent space more actively, which results in a higher measured KL than
the RNN-VAE and Hybrid VAE baselines.

BIVA+LSTM RNN-VAE

he said . “ two .
i tried to think of something to say to him , but he was already on his way back to the house . “ you do n’t have to do this . ”
it sounded as if he was going to say something . the light from the lamp was dim , but the light was dim and the room was dark .
“ and that ’s why you ’re coming . ” or a nuclear bomb , or something .
“ what ? ” “ the baby ? ”
she swallowed . “ you ’re not going to kill me . ”
“ i want you . ” she was n’t going to .
glancing up , i saw the way he was staring at me with a look of pure hatred . “ i guess we could have been more careful , ” he said .
i need a favor . ” there are some things that are not good .
he did n’t . “ you ’re a good man .
you ’re not dead . i had n’t been able to get it out .
i stood , and he followed . “ you ’re going to have to be careful , ” he said .
“ can i sit on the couch and talk ? ” it ’s not a bad idea .
“ it was n’t until i was fifteen , i was n’t in the mood to be around . he asked .
i looked down at my lap . “ this is a bad idea , ” he said , his voice a little hoarse .
the smile disappeared . “ i ’m sure he ’s in love with you .
it was hard to tell which one was more of a rock . as he stepped out of the car , he saw the man standing in the doorway , his eyes wide and his face pale .
i ’m not sure it ’s a good idea . .
the first two . “ no .
he was there . “ in the meantime , i need to get some sleep , ” i said .
“ all of you , ” joe said . i was n’t .
he did n’t care if he was n’t a vampire . did i want to talk to you ?
her mouth curved up , then she nodded . “ i want to hear you say it . ”
just tell me what you want in the end . the train was already in the driveway .
and again . “ good .
the other man ’s voice was hoarse and ragged . i just needed to get out of here , and i needed to get out of here .
i had n’t known that was a bad idea , but i had n’t been able to get it out of my head . “ this is a good idea .
your brother is the most important thing to me . “ hey . ”
you dont need to go to the police , right ? she took a deep breath and let it out .
there was a long silence . then he kissed her .
i looked up . i felt a warm hand on my shoulder and a warm smile spread across my face .
he nodded , and he looked at me , and i could tell he was thinking about it . “ he ’s dead . ”
“ hang on , baby . at the time , i was going to have to get out of the house .
we had to be close to the city , and we could n’t afford to be here . he was so close to the edge of the bed .
you know , it would be better if you were n’t so stupid . ” “ i do n’t know .
excuse me ? “ i do n’t have a choice . ”
you know how much i love you , too . i know i ’m not going to let him touch me , but i do .
a woman ’s voice , a voice that was familiar . i could n’t see the face of the man who ’d just been in the doorway .
i have a very important business to attend to , and i ’m going to have to make a decision . in the end , we all know that we are not going to be able to get out of this .
they sat on the small wooden table in the center of the room . “ yes .
“ it ’s fine . ” “ what are you doing here ? ”
she felt a rush of relief . so the only thing that mattered was that he was here .
maria , he says . neither of them spoke .
what ? from now on , you will be able to get out of here .
“ it does n’t seem like a lot to me , ” he said . the thought of having to kill him made him want to kill her .
he ’d told her everything . the other two were staring at me , their eyes wide .
“ she ’s in shock . i did n’t want to be a part of it , but i was n’t going to let it go .
“ after all , ” he murmured , “ i ’m going to go get the rest of the stuff . ” “ i do n’t want to talk about it .
and then , finally , she ’d done it . she looked at him , her eyes wide .
her words were a whisper , but it was n’t enough . “ that ’s what you ’re going to do .

Table 8: Samples decoded from the prior of the BIVA with LSTM decoder and baseline RNN-VAE.
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F Semi-Supervised Learning

When defining BIVA for semi-supervised classification tasks we follow the approach described
for the M2 model in [22]. In addition to BIVA, described in detail in Appendix B, we introduce
a classification model qϕ(y|x, zBU

<L) in the inference model, where y is the class variable, and a
Categorical latent variable dependency in the generative model.

Inference model. For the classification model we introduce another deterministic hierarchy with
an equivalent parameterization as d̃i,1, ..., d̃i,M . We denote the hierarchy d̃C

i,1, ..., d̃
C

i,M . The forward-
pass is performed by:

d̃C
i,0 =

{
x i = 1

d̃C

i−1,M otherwise
(12)

d̃C
i,j =< gC

ϕi,j
(d̃C

i,j−1); z
BU
i > for j = 1, ...,M (13)

y = gC

ϕi,M+1
(d̃C

i,M ) , (14)

where gC

ϕi,M+1
is a final densely connected neural network layer, of the same dimension as the number

of categories, and a Softmax activation function. The inference model is thereby factorized by:

qϕ(z, y|x) = qϕ(zL|x, y, zBU
<L)qϕ(y|x, zBU

<L)

L−1∏
i=1

qϕ(z
BU
i |x, zBU

<i)qϕ,θ(z
TD
i |x, y, zBU

<i, z
BU
>i, z

TD
>i) . (15)

Generative model. For each stochastic latent variable, z, and the observed variable x in the
generative model, as well as the TD path of the inference model, we add a conditional dependency on
a categorical variable y:

pθ(x, y, z) = pθ(x|z, y)pθ(zL)pθ(y)
L−1∏
i=1

pθ(zi|z>i, y) . (16)

Evidence lower bound. In a semi-supervised learning problem, we have labeled data and unlabeled
data which results in two formulations of the ELBO. The ELBO for labeled data points is given by:

log pθ(x, y) ≥ Eqϕ(z|x,y))

[
log

pθ(x, y, z)

qϕ,θ(z|x, y)

]
≡ −F(θ, ϕ) . (17)

Since the classification model is not included in the above definition of the ELBO we add a classifica-
tion loss term (a categorical cross-entropy), equivalent to the approach in [22]:

F̄(θ, ϕ) = F̄(θ, ϕ)− α · Eq(z<L|x)[log qϕ(y|x, zBU
<L)] , (18)

where α is a hyperparameter that we define as in [31]. For the unlabeled data points, we marginalize
over the labels:

log pθ(x) ≥ Eqϕ(z,y|x)

[
log

pθ(x, y, z)

qϕ,θ(z, y|x)

]
≡ −U(θ, ϕ) . (19)

The combined objective function over the labeled, (xl, yl), and unlabeled data points, (xu), are
thereby given by:

J (θ, ϕ) =
∑
xl,yl

F̄(θ, ϕ;xl, yl) +
∑
xu

U(θ, ϕ;xu) . (20)
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G Additional Results

Table 10: Test log-likelihood on dynamically binarized MNIST for different number of importance
weighted samples. The finetuned models are trained for an additional number of epochs with no free
bits, λ = 0.

− log p(x)
Results with autoregressive components
DRAW+VGP [53] < 79.88
IAFVAE [23] ≤ 79.10
VLAE [5] ≤ 78.53
Results without autoregressive components
IWAE [4] ≤ 82.90
CONVVAE+HVI [47] ≤ 81.94
LVAE [50] ≤ 81.74
DISCRETE VAE [42] ≤ 80.04

BIVA, L1 ≤ 80.60
BIVA, L1e3 ≤ 78.49
BIVA FINETUNED, L1 ≤ 80.06
BIVA FINETUNED, L1e3 ≤ 78.41

Table 11: Test log-likelihood on dynamically binarized OMNIGLOT for different number of impor-
tance weighted samples. The finetuned models are trained for an additional number of epochs with
no free bits, λ = 0.

− log p(x)
Results with autoregressive components
DRAW [13] < 96.50
CONVDRAW [12] < 91.00
VLAE [5] ≤ 89.83
Results without autoregressive components
IWAE [4] ≤ 103.38
LVAE [50] ≤ 102.11
DVAE [42] ≤ 97.43

BIVA, L1 ≤ 95.90
BIVA FINETUNED, L1 ≤ 93.54
BIVA FINETUNED, L1e3 ≤ 91.34

Table 12: Test log-likelihood on statically binarized Fashion MNIST for different number of impor-
tance weighted samples. The finetuned models are trained for an additional number of epochs with
no free bits, λ = 0.

− log p(x)
BIVA, L1 ≤ 94.05
BIVA FINETUNED, L1 ≤ 93.54
BIVA FINETUNED, L1e3 ≤ 87.98
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Table 13: Test log-likelihood on ImageNet 32x32 for different number of importance weighted
samples.

BITS/DIM
With autoregressive components
CONVDRAW [12] < 4.10
PIXELRNN [57] = 3.63
GATEDPIXELCNN [56] = 3.57
Without autoregressive components
REALNVP [9] = 4.28
GLOW [21] = 4.09
FLOW++ [16] = 3.86

BIVA, L1 ≤ 3.98
BIVA, L1e3 ≤ 3.96

(a) L1 (bits/dim). (b) log pθ(x|z) (bits/dim).

Figure 9: Convergence plot on CIFAR-10 training for the LVAE with L = 15, the LVAE+ with L =
15, the LVAE+ with L = 29, and BIVA with L = 15. (a) shows the convergence of the 1 importance
weighted ELBO, L1, calculated in bits/dim. (b) shows the convergence of the reconstruction loss. The
discrepancy between (a) and (b) is explained by the added cost from the stochastic latent variables,
the Kullback-Leibler divergence KL[p(z)||q(z|x)].
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Figure 10: 64x64 CelebA samples generated from a BIVA with increasing levels of stochasticity in
the model (going from close to the mode to the full distribution). In each column the latent variances
are scaled with factors 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. Images in a row look similar because they use the
same Gaussian random noise ϵ to generate the latent variables. BIVA has L = 20 stochastic latent
layers connected by three layer ResNet blocks.
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(a) σ2 = 0.01 (b) σ2 = 0.1

(c) σ2 = 0.5 (d) σ2 = 1.0

Figure 11: BIVA N (0, σ2) generations with varying σ2 = 0.01, 0.1, 0.5, 1.0 for (a), (b), (c) and (d)
respectively. We follow the same generating procedure of Figure 10. BIVA has L = 20 stochastic
latent variables and is trained on the CelebA dataset, preprocessed to 64x64 images following [27].
BIVA achieves a L1 = 2.48 bits/dim on the test set. Close to the mode of the latent distribution there
is very little variance in generated natural images. When we loosen the samples towards the full
distribution, σ2 = 1, we can see how the generated images are adopting different styles and contexts.
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Figure 12: BIVA L = 20 generations (right) from fixed z>i given an input image (left), for different
layers throughout the stochastic variable hierarchy (from left to right i = 12, 14, 16, 17, 18, 19). The
model is trained on CelebA, preprocessed to 64x64 images following [27]. z>i are fixed by passing
the original image through the encoder, after which z≤i are sampled from the prior. When generating
from a higher zi (columns) it is shown how the model has more freedom to augment the input images.
BIVA achieves a L1 = 2.48 bits/dim on the test set.
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Figure 13: BIVA N (0, I) generations on a model trained on CIFAR-10. BIVA has L = 15 stochastic
latent variables and achieves a 3.08 bits/dim on the test set. The images are still not as sharp and
coherent as the PicelCNN++ [45] (3.08 vs. 2.92), however, it does achieve to find coherent structure
resembling the categories of the CIFAR-10 dataset.
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Abstract

This paper introduces novel results for the score function gradient estimator of the
importance weighted variational bound (IWAE). We prove that in the limit of large
K (number of importance samples) one can choose the control variate such that the
Signal-to-Noise ratio (SNR) of the estimator grows as

√
K. This is in contrast to the

standard pathwise gradient estimator where the SNR decreases as 1/
√
K. Based on

our theoretical findings we develop a novel control variate that extends on VIMCO.
Empirically, for the training of both continuous and discrete generative models,
the proposed method yields superior variance reduction, resulting in an SNR
for IWAE that increases with K without relying on the reparameterization trick.
The novel estimator is competitive with state-of-the-art reparameterization-free
gradient estimators such as Reweighted Wake-Sleep (RWS) and the thermodynamic
variational objective (TVO) when training generative models.

1 Introduction

Gradient-based learning is now widespread in the field of machine learning, in which recent advances
have mostly relied on the backpropagation algorithm, the workhorse of modern deep learning. In
many instances, for example in the context of unsupervised learning, it is desirable to make models
more expressive by introducing stochastic latent variables. Backpropagation thus has to be augmented
with methodologies for marginalization over latent variables.

Variational inference using an inference model (amortized inference) has emerged as a key method
for training and inference in latent variable models [1–7]. The pathwise gradient estimator, based on
the reparameterization trick [2, 3], often gives low-variance estimates of the gradient for continuous
distributions. However, since discrete distributions cannot be reparameterized, these methods are not
applicable to inference in complex simulators with discrete variables, such as reinforcement learning
or advanced generative processes [8–11]. While the score function (or Reinforce) estimator [12] is
more generally applicable, it is well known to suffer from large variance. Consequently, most of
the recent developments focus on reducing the variance using control variates [13–18] and using
alternative variational objectives [9, 19–21].

Recently, variational objectives tighter than the traditional evidence lower bound (ELBO) have been
proposed [21, 22]. In importance weighted autoencoders (IWAE) [22] the tighter bound comes with
the price of a K-fold increase in the required number of samples from the inference network. Despite
yielding a tighter bound, using more samples can be detrimental to the learning of the inference
model [23]. In fact, the Signal-to-Noise ratio (the ratio of the expected gradient to its standard
deviation) of the pathwise estimator has been shown to decrease at a rate O(K−1/2) [23]. Although
this can be improved to O(K1/2) by exploiting properties of the gradient to cancel high-variance
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terms [24], the variational distributions are still required to be reparameterizable. In this work we
introduce OVIS (Optimal Variance – Importance Sampling), a novel score function-based estimator
for importance weighted objectives with improved SNR.

The main contributions of this paper are: 1) A proof that, with an appropriate choice of control
variate, the score function estimator for the IWAE objective can achieve a Signal-to-Noise Ratio
SNR = O(K1/2) as the number of importance samples K → ∞. 2) A derivation of OVIS, a class
of practical low-variance score function estimators following the principles of our theoretical analysis.
3) State-of-the-art results on a number of non-trivial benchmarks for both discrete and continuous
stochastic variables, with comparison to a range of recently proposed score function methods.

2 Optimizing the Importance Weighted Bound

Importance weighted bound (IWAE) Amortized variational inference allows fitting a latent
variable model pθ(x, z) to the data using an approximate posterior qϕ(z|x) [2]. By using multiple
importance weighted samples, we can derive a lower bound to the log marginal likelihood that is
uniformly tighter as the number of samples, K, increases [22]. The importance weighted bound
(IWAE) for one data point x is:

LK(x) := E
[
log Ẑ

]
Ẑ :=

1

K

K∑
k=1

wk wk :=
pθ(x, zk)

qϕ(zk|x)
, (1)

where E denotes an expectation over the K-copy variational posterior qϕ(z1:K |x) :=
∏K

k=1 qϕ(zk|x).
This bound coincides with the traditional evidence lower bound (ELBO) for K = 1. The log
likelihood lower bound for the entire data set is LK(x1:n) =

∑n
i=1 LK(xi). In the following we will

derive results for one term LK = LK(x).

Score function estimator Without making assumptions about the variational distribution, the
gradient of the importance weighted bound (1) with respect to the parameters of the approximate
posterior factorizes as (see Appendix A):

∇ϕLK = E
[∑

k
dkhk

]
dk := log Ẑ − vk vk :=

wk∑K
l=1 wl

, (2)

where hk := ∇ϕ log qϕ(zk|x) is the score function. A Monte Carlo estimate of the expectation in (2)
yields the score function (or Reinforce) estimator.

Control variates The vanilla score function estimator of (2) is often not useful in practice due
to its large sample-to-sample variance. By introducing control variates that aim to cancel out zero
expectation terms, this variance can be reduced while keeping the estimator unbiased.

Given posterior samples z1, . . . , zK ∼ qϕ(z1:K |x), let z−k denote [z1, . . . , zk−1, zk+1, . . . , zK ], let
Ek[. . .] and E−k[. . .] be the expectations over the variational distributions of zk and z−k, respectively,
and let {ck}Kk=1 be scalar control variates, with each ck = ck(z−k) independent of zk. Using the
independence of ck and hk for each k, and the fact that the score function has zero expectation, we
have E[ckhk] = E−k[ck]Ek[hk] = 0. Thus, we can define an unbiased estimator of (2) as:

g :=
∑

k
(dk − ck)hk (3)

E[g] = E
[∑

k
(dk − ck)hk

]
= E

[∑
k
dkhk

]
= ∇ϕLK . (4)

In the remainder of this paper, we will use the decomposition dk = fk+f−k, where fk = fk(zk, z−k)
and f−k = f−k(z−k) denote terms that depend and do not depend on zk, respectively. This will
allow us to exploit the mutual independence of {zk}Kk=1 to derive optimal control variates.

Signal-to-Noise Ratio (SNR) We will compare the different estimators on the basis of their Signal-
to-noise ratio. Following [23], we define the SNR for each component of the gradient vector as

SNRi :=
|E[gi]|√
Var[gi]

, (5)
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where gi denotes the ith component of the gradient vector.

In Section 3 we derive the theoretical SNR for the optimal choice of control variates in the limit
K → ∞. In Section 4 we derive the optimal scalar control variates {ck}Kk=1 by optimizing the
trace of the covariance of the gradient estimator g, and in Section 6 we experimentally compare our
approach with state-of-the-art gradient estimators in terms of SNR.

3 Asymptotic Analysis of the Signal-to-Noise Ratio

Assuming the importance weights have finite variance, i.e. Var[wk] < ∞, we can derive the
asymptotic behavior of the SNR as K → ∞ by expanding log Ẑ as a Taylor series around
Z := pθ(x) =

∫
pθ(x, z)dz [23]. A direct application of the pathwise gradient estimator (reparame-

terization trick) to the importance weighted bound results in an SNR that scales as O(K−1/2) [23],
which can be improved to O(K1/2) by exploiting properties of the gradient [24]. In the following we
will show that, for a specific choice of control variate, the SNR of the score function estimator scales
as O(K1/2). Thus, a score function estimator exists for which increasing the number of importance
samples benefits the gradient estimate of the parameters of the variational distribution.

For the asymptotic analysis we rewrite the estimator as g =
∑

k

(
− ∂ log Ẑ

∂wk
wk + log Ẑ − ck

)
hk and

apply a second-order Taylor expansion to log Ẑ. The resulting expression g =
∑

k(fk+f−k−ck)hk

separates terms fk that contribute to the expected gradient from terms f−k that have zero expectation
and thus only contribute to the variance (cf. Appendix B):

fk ≈ w2
k

2K2Z2
(6)

f−k ≈ logZ − 3

2
+

2

KZ

∑
l ̸=k

wl −
1

2K2Z2

(∑
l ̸=k

wl

)2
. (7)

Since f−k and ck are independent of hk, the expected gradient is (cf. Appendix C.1):

E[g] =
∑

k
E[fkhk] ≈

1

2Z2K
E1

[
w2

1h1

]
= O(K−1) , (8)

where E1 denotes an expectation over the first latent distribution qϕ(z1|x). Since the choice of control
variates ck = ck(z−k) is free, we can choose ck = f−k to cancel out all zero expectation terms. The
resulting covariance, derived in Appendix C.2, is:

Cov[g] = Cov
[∑

k
fkhk

]
≈ 1

4K3Z4
Cov1

[
w2

1h1

]
= O(K−3) (9)

with Cov1 indicating the covariance over qϕ(z1|x). Although as we discuss in Section 4 this is not
the minimal variance choice of control variates, it is sufficient to achieve an SNR of O(K1/2).

4 Optimal Control Variate

The analysis above shows that in theory it is possible to attain a good SNR with the score function
estimator. In this section we derive the optimal (in terms of variance of the resulting estimator)
control variates {ck}Kk=1 by decomposing g =

∑
k(fk + f−k − ck)hk as above, and minimizing the

trace of the covariance matrix, i.e. E[||g||2]− ||E[g]||2. Since E[f−khk] and E[ckhk] are both zero,
E[g] = ∇ϕLK does not depend on ck. Thus, the minimization only involves the first term:

1

2

∂

∂ck
E
[
||g||2

]
= E

[
hT
k

∑
l
(fl + f−l − cl)hl

]
= E−k

[∑
l
Ek

[
flh

T
k hl

]
+ (f−k − ck)Ek

[
∥hk∥2

]]
.

where Ek and E−k indicate expectations over qϕ(zk|x) and qϕ(z−k|x), respectively. Setting the
argument of E−k to zero, we get the optimal control variates ck = ck(z−k) and gradient estimator g:

ck = f−k +
∑

l

Ek

[
flh

T
k hl

]
Ek [∥hk∥2]

(10)

g =
∑

k

(
fk −

∑
l

Ek

[
flh

T
k hl

]
Ek [∥hk∥2]

)
hk . (11)
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Applying (11) in practice requires marginalizing over one latent variable and decoupling terms that
do not depend on zk from those that do. In the remainder of this section we will 1) make a series of
approximations to keep computation tractable, and 2) consider two limiting cases for the effective
sample size (ESS) [25] in which we can decouple terms.

Simplifying approximations to Equation (11) First, we consider a term with l ̸= k, define
∆fl := fl − Ek[fl], and subtract and add Ek[fl] from inside the expectation:

Ek

[
flh

T
k

]
hl = Ek

[
∆flh

T
k

]
hl + Ek[fl]Ek

[
hT
k

]
hl = Ek

[
∆flh

T
k

]
hl

where we used the fact that Ek [hk] = 0. The l ̸= k terms thus only contribute to fluctuations relative
to a mean value, and we assume they can be neglected.

Second, we assume that |ϕ|, the number of parameters of qϕ, is large, and the terms of the sum
∥hk∥2 =

∑|ϕ|
i=1 h

2
ki are approximately independent with finite variances σ2

i . By the Central Limit
Theorem we approximate the distribution of ∆∥hk∥2 := ∥hk∥2 − Ek

[
∥hk∥2

]
with a zero-mean

Gaussian with standard deviation
(∑|ϕ|

i=1 σ
2
i )

1/2. Seeing that Ek

[
∥hk∥2

]
is O(|ϕ|), we have

Ek

[
fk∥hk∥2

]
Ek [∥hk∥2]

= Ek [fk] +
Ek

[
fk∆∥hk∥2

]
Ek [∥hk∥2]

= Ek [fk] +O(|ϕ|−1/2) ,

where we used that the argument in the numerator scales as
(∑|ϕ|

i=1 σ
2
i

)1/2
= O(|ϕ|1/2).

Finally, the expectation can be approximated with a sample average. Writing fk = fk(zk, z−k) and
drawing S new samples z(1), . . . , z(S) ∼ qϕ(z|x):

Ek [fk] ≈
1

S

S∑
s=1

fk(z
(s), z−k) .

This will introduce additional fluctuations with scale S−1/2.

Putting these three approximations together and using dk(zk, z−k) = fk(zk, z−k) + f−k(z−k), we
obtain the sample-based expression of the OVIS estimator, called OVISMC in the following:

OVISMC : g ≈
∑
k

(
dk(zk, z−k)−

1

S

S∑
s=1

dk(z
(s), z−k)

)
hk . (12)

Naively, this will produce a large computational overhead because we now have in total KS terms.
However, we can reduce this to O(K+S) because the bulk of the computation comes from evaluating
the importance weights and because the S auxiliary samples can be reused for all K terms.

Effective sample size (ESS) The ESS [25] is a commonly used yardstick of the efficiency of an
importance sampling estimate, defined as

ESS :=
(
∑

k wk)
2∑

k w
2
k

=
1∑
k v

2
k

∈ [1,K] . (13)

A low ESS occurs when only a few weights dominate, which indicates that the proposal distribution q
poorly matches p. In the opposite limit, the variance of importance weights is finite and the ESS will
scale with K. Therefore the limit ESS ≫ 1 corresponds to the asymptotic limit studied in Section 3.

Optimal control for ESS limits and unified interpolation In the following, we consider the two
extreme limits ESS ≫ 1 and ESS ≈ 1 to derive sample-free approximations to the optimal control.
We can thus in these limits avoid the sample fluctuations and excess computation of OVISMC.

We first consider ESS ≫ 1 and for each k we introduce the unnormalized leave-wk-out approximation
to Ẑ:

Z̃[−k] :=
1

K

∑
l ̸=k

wl such that Ẑ − Z̃[−k] =
wk

K
. (14)
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Assuming Var[wk] < ∞, this difference is O(K−1) as K → ∞, thus we can expand log Ẑ around
Ẑ = Z̃[−k]. In this limit, the optimal control variate simplifies to (cf. Appendix D.1):

ESS ≫ 1 : ck ≈ log
1

K − 1

∑
l ̸=k

wl + log(1− 1

K
) . (15)

When ESS ≈ 1, one weight is much larger than the others and the assumption above is no longer valid.
To analyze this frequently occurring scenario, assume that k′ = argmaxl wl and wk′ ≫

∑
l ̸=k′ wl.

In this limit log Ẑ ≈ logwk′/K and vk ≈ δk,k′ and thus dk = logwk′/K − δk,k′ . In Appendix D.2
we show we can approximate Equation (10) with

ESS ≈ 1 : ck ≈ log
1

K − 1

∑
l ̸=k

wl − vk . (16)

We introduce OVIS∼ to interpolate between the two limits (Appendix D.3):

cγk := log
1

K − 1

∑
l ̸=k

wl − γvk + (1− γ) log

(
1− 1

K

)
γ ∈ [0, 1] . (17)

In this paper we will only conduct experiments for the two limiting cases γ = 0, corresponding to
Equation (15), and γ = 1 approximating Equation (16). Tuning the parameter γ in the range [0, 1]
will be left for future work. We discuss the implementation in the appendix K.

Higher ESS with looser lower bound Empirically we observe that training may be impaired by a
low ESS and by posterior collapse [4, 26–29]. This motivates trading the tight IWAE objective for
a gradient estimator with higher ESS. To that end, we use the importance weighted Rényi (IWR)
bound:

Lα
K(x) :=

1

1− α
E
[
log Ẑ(α)

]
Ẑ(α) :=

1

K

∑
k
w1−α

k (18)

which for α ∈ [0, 1] is a lower bound on the Rényi objective logE1

[
w1−α

1

]
/(1−α) [30]. The Rényi

objective in itself coincides with log p(x) for α = 0 and is monotonically non-increasing in α, i.e. is an
evidence lower bound [30]. So we have a looser bound but higher ESS(α) = 1/

∑
k v

2
k(α) ≥ ESS(0)

for α ∈ [0, 1] with vk(α) = w1−α
k /

∑
l w

1−α
l . Furthermore, for α = 1 the bound corresponds to the

ELBO and the divergence DKL(qϕ(z|x)||pθ(z|x)) is guaranteed to be minimized. In Appendix E we
derive the score function estimator and control variate expressions for Lα

K . The objective can either
be used in a warm-up scheme by gradually decreasing α → 0 throughout iterations or can be run
with a constant 0 < α < 1.

5 Related Work

The score function estimator with control variates can be used with all the commonly used variational
families. By contrast, the reparameterization trick is only applicable under specific conditions. We
now give a brief overview of the existing alternatives and refer the reader to [31] for a more extensive
review. The importance of handling discrete distributions without relaxations is discussed in [9].

NVIL [13], DARN [17], and MuProp [18] demonstrate that score function estimators with carefully
crafted control variates allow to train deep generative models. VIMCO [14] extends this to multi-
sample objectives, and recycles the Monte Carlo samples z−k to define a control variate ck = ck(z−k).
Unlike OVIS, VIMCO only controls the variance of the term log Ẑ in dk = log Ẑ − vk, leaving vk
uncontrolled, and causing the SNR to decrease with the number of particles K as we empirically
observe in Section 6.1. We provide a detailed review of VIMCO in Appendix F.

The Reweighted Wake-Sleep (RWS) algorithm [20] is an extension of the original Wake-Sleep
algorithm (ws) [19] that alternates between two distinct learning phases for optimizing importance
weighted objectives. A detailed review of RWS and ws is available in Appendix F.

The Thermodynamic Variational Objective (TVO) [21] is a lower bound to log pθ(x) that stems
from a Riemannian approximation of the Thermodynamic Variational Identity (TVI), and unifies the
objectives of Variational Inference and Wake-Sleep. Evaluating the gradient involves differentiating
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through an expectation over a distribution with an intractable normalizing constant. To accommodate
this, the authors propose an estimator that generalizes the score function estimator based on a tractable
covariance term. We review the TVO in more detail in Appendix F.

Given a deterministic sampling path g(ϵ; θ) such that z ∼ pθ(z) and z = g(ϵ; θ), ϵ ∼ p(ϵ)
are equivalent, one can derive a pathwise gradient estimator of the form ∇θEpθ(z) [fθ(z)] =
Ep(ϵ) [∇θfθ(g(ϵ; θ))]. This estimator – introduced in machine learning as the reparameterization
trick or stochastic backpropagation [2, 3] – exhibits low variance thanks to the structural information
provided by the sampling path. Notably, a zero expectation term can be removed from the estima-
tor [32]. Extending on this, [24] derives an alternative gradient estimator for IWAE that exhibits
SNR ∼ K1/2, as opposed to SNR ∼ K−1/2 for the standard IWAE objective [23].

Continuous relaxations of discrete distributions yield a biased low-variance gradient estimate thanks
to the reparameterization trick [16, 33]. Discrete samples can be obtained using the Straight-Through
estimator [5, 34]. The resulting gradient estimate remains biased, but can be used as a control variate
for the score function objective, resulting in an unbiased low-variance estimate of the gradient [15, 35].

6 Experimental Results

We conduct a number of experiments1 on benchmarks that have previously been used to test score
function based estimators. All models are trained via stochastic gradient ascent using the Adam
optimizer [36] with default parameters. We use regular gradients on the training objective for the
generative model parameters θ. The SNR for θ scales as O(K1/2) [23].

6.1 Asymptotic Variance

Figure 1: Gaussian model. Parameter-wise average of the asymptotic SNR, DSNR and variance
of the gradients of the parameter b for different number of particles K ∈ [3, 1000] using 104 MC
samples. The dotted lines stand for y = 10±1K±0.5.

Following [23], we empirically corroborate the asymptotic properties of the OVIS gradient estimator
by means of the following simple model:

z ∼ N (z;µ, I), x|z ∼ N (x; z, I), qϕ(z|x) = N
(
z;Ax+ b, 2

3I
)
.

where x and z are real vectors of size D = 20. We sample N = 1024 points
{
x(n)

}N
n=1

from
the true model where µ⋆ ∼ N (0, I). The optimal parameters are A⋆ = I/2, b⋆ = µ⋆/2, and
µ⋆ = 1

N

∑N
n=1 x

(n). The model parameters are obtained by adding Gaussian noise of scale ϵ = 10−3.
We measure the variance and the SNR of the gradients with 104 MC samples. We also measured the
directional SNR (DSNR [23]) to probe if our results hold in the multidimensional case.

In Figure 1 we report the gradient statistics for b. We observe that using more samples in the standard
IWAE leads to a decrease in SNR as O(K−1/2) for both VIMCO and the pathwise-IWAE [23]. The
tighter variance control provided by OVIS leads the variance to decrease almost at a rate O(K−3),
resulting in a measured SNR not far from O(K1/2) both for OVISMC and OVIS∼. This shows that,
despite the approximations, the proposed gradient estimators OVISMC and OVIS∼ are capable of
achieving the theoretical SNR of O(K1/2) derived in the asymptotic analysis in Section 3.

1The full experimental framework is available at github.com/vlievin/ovis
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Figure 2: Training of the Gaussian mixture model. Minimum test-diagnostics recorded during training
and training average of the SNR of the gradients of ϕ with M = card(ϕ). In contrast to VIMCO,
OVIS∼ and OVISMC all benefit from the increase of the particles budget, OVISMC yields the most
accurate posterior among the compared methods.

In Appendix G, we learn the parameters of the Gaussian model using OVIS,RWS,VIMCO and
the TVO. We find that optimal variance reduction translates into a more accurate estimation of the
optimal parameters of the inference network when compared to RWS,VIMCO and the TVO.

6.2 Gaussian Mixture Model

We evaluate OVIS on a Gaussian Mixture Model and show that, unlike VIMCO [9], our method
yields better inference networks as the number of particles K increases. Following [9], we define:

pθ(z) = Cat(z| softmax(θ)) p(x|z) = N
(
x|µz, σ

2
z

)
qϕ(z|x) = Cat (z| softmax (ηϕ(x)))

where z ∈ {0, . . . , C − 1}, µz = 10z, σz = 5, and C = 20 is the number of clusters. The
inference network ηϕ is parameterized by a multilayer perceptron with architecture 1–16–C and tanh

activations. The true generative model is set to pθ⋆(z = c) = (c+ 5)/
∑C

i=1(i+ 5).

All models are trained for 100k steps with 5 random seeds. We compare OVIS with VIMCO,
RWS with wake-ϕ update, Reinforce, and the TVO. For the latter we chose to use 5 partitions and
β1 = 10−2, after a hyperparameter search over β1 ∈ {10−1, 10−1.5, 10−2, 10−2.5, 10−3} and {2, 5}
partitions.

Each model is evaluated on a held-out test set of size M = 100. We measure the accu-
racy of the learned posterior qϕ(z|x) by its average L2 distance from the true posterior, i.e.
1
M

∑M
m=1

∥∥qϕ (z|x(m)
)
− pθ⋆

(
z|x(m)

)∥∥
2
. As a sanity check, we assess the quality of the gen-

erative model using ∥softmax(θ)− softmax (θ⋆)∥2. The SNR of the gradients for the parameters ϕ
is evaluated on one mini-batch of data using 500 MC samples.

We report our main results in Figure 2, and training curves in Appendix H. In contrast to VIMCO,
the accuracy of the posteriors learned using OVISMC and OVIS∼ all improve monotonically with
K and outperform the baseline estimators, independently of the choice of the number of auxiliary
particles S. All OVIS methods outperform the state-of-the-art estimators RWS and the TVO, as
measured by the L2 distance between the approximate and the true posterior.

6.3 Deep Generative Models

We utilize the OVIS estimators to learn the parameters of both discrete and continuous deep generative
models using stochastic gradient ascent. The base learning rate is fixed to 3·10−4, we use mini-batches
of size 24 and train all models for 4 · 106 steps. We use the statically binarized MNIST dataset [37]
with the original training/validation/test splits of size 50k/10k/10k. We follow the experimental
protocol as detailed in [21], including the β partition for the TVO and the exact architecture of the
models. We use a three-layer Sigmoid Belief Network [38] as an archetype of discrete generative
model [13, 14, 21] and a Gaussian Variational Autoencoder [2] with 200 latent variables. All models
are trained with three initial random seeds and for K ∈ {5, 10, 50} particles.

We assess the performance based on the marginal log-likelihood estimate log p̂θ(x) = L5000(x),
that we evaluate on 10k training data points, such as to disentangle the training dynamics from the
regularisation effect that is specific to each method. We measure the quality of the inference network
solution using the divergence DKL (qϕ(z|x)||pθ(z|x)) ≈ log p̂θ(x)−L1(x). The full training curves
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Figure 3: Training a Sigmoid Belief Network on Binarized MNIST. (Left) Optimizing for the
importance weighted bound LK using OVIS. (Right) Optimizing for the Rényi importance lower
bound Lα

K using OVIS with α annealing 0.99 → 0. The curves are averaged over three seeds and
smoothed for clarity.

Figure 4: Training a one layer Gaussian VAE. Maximum recorded training log p̂θ(x), final estimate
of the bound DKL (qϕ(z|x)||pθ(z|x)) and training average of the ESS and of the SNR. OVIS yields
similar likelihood performances as the TVO but benefits from a tighter bound thanks to optimizing
for the IWR bound.

– including the test log likelihood and divergences – are available in Appendix J. We will show that
OVIS improves over VIMCO, on which it extends, and we show that combining OVIS∼ with the
Variational Rényi bound (IWR) as described in Section 4 outperforms the TVO.

6.3.1 Sigmoid Belief Network (SBN)

A. Comparison with VIMCO We learn the parameters of the SBN using the OVIS estimators for
the IWAE bound and use VIMCO as a baseline. We report log p̂θ(x) in the left plot of Figure 3. All
OVIS methods outperform VIMCO, ergo supporting the advantage of optimal variance reduction.
When using a small number of particles K = 5, learning can be greatly improved by using an
accurate MC estimate of the optimal control variate, as suggested by OVISMC(S = 50) which allows
gaining +1.0 nats over VIMCO. While OVIS(γ = 0), designed for large ESS barely improved
over VIMCO, the biased OVIS∼(γ = 1) for low ESS performed significantly better than other
methods for K ≥ 10, which coincides with the ESS measured in the range [1.0, 3.5] for all methods.
We attribute the relative decrease of performances observed for OVISMC for K = 50 to posterior
collapse.

B. Training using IWR bounds In Figure 3 (right) we train the SBN using OVIS and the TVO.
OVIS is coupled with the objective Lα

K for which we anneal the parameter α from 0.99 (L0.99
K ≈ L1)

to 0 (L0
K = LK ) during 1e6 steps using geometric interpolation. For all K values, OVIS outperform

the TVO and OVIS∼(γ = 1) performs comparably with OVISMC.
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6.3.2 Gaussian Variational Autoencoder (VAE)

In Figure 4 we train the Gaussian VAE using the standard pathwise IWAE, Sticking the Landing
(STL) [32], DReG [24], the TVO and OVIS∼(γ = 1).

OVIS is applied to the IWR bound with α = 0.7. As measured by the training likelihood,
OVIS∼(γ = 1) coupled with the IWR bound performs on par with the TVO, which bridges
the gap to the standard pathwise IWAE for K = 50, although different objectives are at play. The
advanced pathwise estimators (STL and DReG) outperform all other methods. Measuring the quality
of the learned proposals qϕ(z|x) using the KL divergence allows disentangling the TVO and OVIS∼
methods, as OVIS(γ = 1) applied to the IWR bound outputs higher-quality approximate posteriors
for all considered number of particles.

6.4 A final Note on OVIS∼(γ = 1)

OVIS∼(γ = 1) generates training dynamics that are superior to the baseline TVO and to OVISMC

given a comparable particle budget (appendix I). We interpret this result as a consequence of the
ESS-specific design, which also appeared to be robust to the choice of α in the IWR objective. This
also corroborates the results of [32], that suppressing the term −

∑
k vkhk from the gradient estimate

improves learning. We therefore recommend the practitioner to first experiment with OVIS∼(γ = 1)
since it delivers competitive results at a reasonable computational cost.

7 Conclusion

We proposed OVIS, a gradient estimator that is generally applicable to deep models with stochastic
variables, and is empirically shown to have optimal variance control. This property is achieved by
identifying and canceling terms in the estimator that solely contribute to the variance. We expect that
in practice it will often be a good trade-off to use a looser bound with a higher effective sample size,
e.g. by utilizing the OVIS estimator with the importance weighted Rényi bound, allowing control
of this trade-off via an additional scalar smoothing parameter. This sentiment is supported by our
method demonstrating better performance than the current state-of-the-art.

8 Financial Disclosure

The PhD program supporting Valentin Liévin is partially funded by Google. This research was
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As with other theoretical advances such as those presented in this paper, consequences are not
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A Derivation of the Score Function Estimator

Given K samples, the objective being maximized is

LK(x) := E
[
log Ẑ

]
Ẑ :=

1

K

K∑
k=1

wk wk :=
pθ(x, zk)

qϕ(zk|x)
. (19)

The gradients of the multi-sample objective LK with respect to the parameter ϕ can be expressed as
a sum of two terms, one arising from the expectation over the variational posterior qϕ(z1:K |x) :=∏K

k=1 qϕ(zk|x) and one from log Ẑ:

∇ϕLK = E
[
log Ẑ

∇ϕqϕ(z1:K |x)
qϕ(z1:K |x)

]
︸ ︷︷ ︸

(a)

+E
[
∇ϕ log Ẑ

]
︸ ︷︷ ︸

(b)

.

The term (a) yields the traditional score function estimator

(a) = E
[
log Ẑ∇ϕ log qϕ(z1:K |x)

]
= E

[
log Ẑ

K∑
k=1

∇ϕ log qϕ(zk|x)

]
. (20)

The term (b) is

(b) = E

[
∇ϕ log

1

K

K∑
k=1

wk

]

= E

[
1

1
K

∑K
k=1 wk

∇ϕ
1

K

K∑
k=1

wk

]

= E

[
1∑K

l=1 wl

K∑
k=1

∇ϕwk

]

= E

[
1∑K

l=1 wl

K∑
k=1

wk∇ϕ logwk

]

= E

[
K∑

k=1

vk∇ϕ logwk

]
, vk =

wk∑K
l=1 wl

= −E

[
K∑

k=1

vk∇ϕ log qϕ(zk|x)

]
. (21)

The derivation yields a factorized expression of the gradients

∇ϕLK = Eqϕ(z1:K |x)

[
K∑

k=1

(
log Ẑ − vk

)
hk

]
with hk := ∇ϕ log qϕ(zk|x) . (22)

B Asymptotic Analysis

We present here a short derivation and direct the reader to [23] for the fine prints of the proof.
The main requirement is that wk is bounded, so that Ẑ − Z (with Z = p(x)) will converge to 0
almost surely as K → ∞. We can also state this through the central limit theorem by noting that
Ẑ−Z = 1

K

∑
k(wk −Z) is the sum of K independent terms so if Var1[w1] is finite then Ẑ−Z will

converge to a Gaussian distribution with mean E[Ẑ−Z] = 0 and variance Var[Ẑ−Z] = 1
K Var1[w1].

The K−1 factor on the variance follows from independence. This means that in a Taylor expansion
in Ẑ − Z higher order terms will be suppressed.
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Rewriting g in terms of log Ẑ:

g =
∑
k

(dk − ck)hk =
∑
k

(
log Ẑ − wk

∂

∂wk
log Ẑ − ck

)
hk (23)

and using the second-order Taylor expansion of log Ẑ about Z:

log Ẑ ≈ logZ +
Ẑ − Z

Z
− (Ẑ − Z)2

2Z2
(24)

we have

log Ẑ ≈ logZ − 3

2
+

2

KZ

∑
l

wl −
1

2K2Z2

(∑
l

wl

)2

(25)

∂

∂wk
log Ẑ ≈ 2

KZ
− 1

K2Z2

∑
l

wl . (26)

The term dk can thus be approximated as follows:

dk = log Ẑ − wk
∂

∂wk
log Ẑ

≈ logZ − 3

2
+

2

KZ

∑
l ̸=k

wl −
1

2K2Z2

(∑
l

wl

)2

+
1

K2Z2
wk

∑
l

wl

= logZ − 3

2
+

2

KZ

∑
l ̸=k

wl −
1

2K2Z2

(∑
l ̸=k

wl

)2

+
1

2K2Z2
w2

k (27)

where we used (∑
l

wl

)2

=

(∑
l ̸=k

wl

)2

+ w2
k + 2wk

∑
l ̸=k

wl .

By separately collecting the terms that depend and do not depend on zk into fk = fk(zk, z−k) and
f−k = f−k(z−k), respectively, we can rewrite the estimator g as:

g =
∑
k

(fk + f−k − ck)hk (28)

and from (27) we have

fk ≈ w2
k

2K2Z2
(29)

f−k ≈ logZ − 3

2
+

2

KZ

∑
l ̸=k

wl −
1

2K2Z2

(∑
l ̸=k

wl

)2

. (30)

C Asymptotic Expectation and Variance

We derive here the asymptotic expectation and variance of the gradient estimator g in the limit
K → ∞.

C.1 Expectation

If both f−k and ck are independent of zk, we can write:

E[g] = E

[∑
k

(fk + f−k − ck)hk

]
=
∑
k

E [fkhk] (31)
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where we used that E [f−khk] and E [ckhk] are zero. In the limit K → ∞, each term of the sum can
be expanded with the approximation (29) and simplified:

E [fkhk] ≈ E
[

w2
k

2K2Z2
hk

]
=

1

2K2Z2
E1

[
w2

1h1

]
(32)

where E1 denotes an expectation over the posterior qϕ(z1|x). The last step follows from the fact that
the latent variables {zk}Kk=1 are i.i.d. and the argument of the expectation only depends on one of
them. In conclusion, the expectation is:

E[g] =
∑
k

E [fkhk] ≈
1

2KZ2
E1

[
w2

1h1

]
= O(K−1) (33)

irrespective of f−k and ck.

C.2 Variance

If ck is chosen to be ck(z−k) = f−k(z−k) then we can again use the approximation (29) for K → ∞
and get the asymptotic variance:

Var[g] = Var

[∑
k

fkhk

]
(34)

≈ Var

[∑
k

w2
k

2K2Z2
hk

]
(35)

=
1

4K4Z4

∑
k

Vark
[
w2

khk

]
(36)

=
1

4K3Z4
Var1

[
w2

1h1

]
(37)

= O(K−3) (38)
where Vark denotes the variance over the kth approximate posterior qϕ(zk|x), and we used the fact
that the latent variables {zk}Kk=1 are i.i.d. and therefore there are no covariance terms.

D Optimal Control for the ESS Limits and Unified Interpolation

D.1 Control Variate for Large ESS

In the gradient estimator g =
∑

k

(
log Ẑ − ∂ log Ẑ

∂wk
wk − ck

)
hk, we consider the kth term in the

sum, where we have that Ẑ − Z̃[−k] =
wk

K → 0 as K → ∞. We can therefore expand log Ẑ as a
Taylor series around Ẑ = Z̃[−k], obtaining:

log Ẑ = log Z̃[−k] +

∞∑
p=1

(−1)p+1

p

(
wk

KZ̃[−k]

)p

(39)

∂ log Ẑ

∂wk
=

1

wk

∞∑
p=1

(−1)p+1

(
wk

KZ̃[−k]

)p

. (40)

Inserting these results into the gradient estimator and using the expression g =
∑

k(fk+f−k−ck)hk

we see that
f−k = log Z̃[−k] (41)

fk =

∞∑
p=1

(−1)p+1

(
1

p
− 1

)(
wk

KZ̃[−k]

)p

(42)

=

∞∑
p=2

(−1)p
(
1− 1

p

)(
wk

KZ̃[−k]

)p

. (43)
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We now use this to simplify the optimal control variate (10) to leading order. Since fk is order K−2,
the term Ek

[
fk∥hk∥2

]
will be of order K−2 as well. The l ̸= k terms Ek

[
flh

T
k hl

]
get non-zero

contributions only through the wk term in fl. As wk appears in Z̃[−l] with a prefactor K−1, we have
Ek

[
flh

T
k hl

]
= O(K−3) for l ̸= k, and the sum of these terms is O(K−2). Overall, this means that

the second term in the control variate only gives a contribution of O(K−2) and thus can be ignored:

ck ≈ log Z̃[−k] = log
1

K

∑
l ̸=k

wl = log
1

K − 1

∑
l ̸=k

wl + log(1− 1

K
) . (44)

Note that in the simplifying approximation in Section 4 we argue that the l ̸= k terms Ek

[
flh

T
k hl

]
can be omitted and only the l = k term retained. Here we show that their overall contribution is
the same order as the l = k term. These results are not in contradiction because here we are only
discussing orders and not the size of terms.

D.2 Control Variate for Small ESS

In the case ESS ≈ 1 we can write log Ẑ as a sum of two terms:

log Ẑ = log
wk′

K
+ log

(
1 +

KZ̃[−k′]

wk′

)
, (45)

where wk′ is the dominating weight. The first term dominates and the second can be ignored to leading
order. We will leave out a derivation for non-leading terms for brevity. So the gradient estimator
g =

∑
k

(
log Ẑ − ∂ log Ẑ

∂wk
wk − ck

)
hk simply becomes g ≈

∑
k

(
log wk′

K − δk,k′ − ck
)
hk. This

corresponds to fk = δk,k′ logwk′ and f−k = (1− δk,k′) logwk′ − δk,k′ − logK. Inserting this into
Equation (11) we get:

g =
∑
k

(
fk −

∑
l

Ek

[
flh

T
k hl

]
Ek [∥hk∥2]

)
hk =

(
logwk′ −

Ek′
[
logwk′ ||hk′ ||2

]
Ek′ [||hk′ ||2]

)
hk′ . (46)

Estimating the expectation Ek′ [. . . ] in Equation (46) using i.i.d. samples from qϕ(z|x) is computa-
tionally involved. Therefore we resort to the approximation g ≈

∑
k

(
log wk′

K − δk,k′ − ck
)
hk and

δk,k′ ≈ vk, which holds in the limit ESS → 1. We get:

ck ≈ log Ẑ[−k] − vk = log
1

K − 1

∑
l ̸=k

wl − vk . (47)

Relying on the approximation δk,k′ ≈ vk corresponds to suppressing the term −vk of the prefactors
dk = log Ẑ − vk and does not guarantee the resulting objective to be unbiased for ESS > 1.
Suppressing this term has been explored in depth for the pathwise gradient estimator [32]. The
gradient estimator

∑
k vkhk corresponds to wake-phase update in RWS.

D.3 Unified Interpolation

We unify the two ESS limits under a unifying expression OVIS∼ defined for a scalar γ ∈ [0, 1]:

cγk := log Ẑ[−k] − γvk + (1− γ) log(1− 1/K) (48)

where

c0k = log
1

K − 1

∑
l ̸=k

wl + log(1− 1/K) (49)

c1k = log
1

K − 1

∑
l ̸=k

wl − vk . (50)
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E Rényi Importance Weighted Bound

All the analysis applied to the score function estimator for the importance weighted bound including
asymptotic SNR can directly be carried over to the Rényi importance weighted bound Lα

K(x) because
all the independence properties are unchanged. The score function estimator of the gradient of ϕ is
given by

∇ϕLα
K(x) =

∑
k

(
1

1− α
log Ẑ(α)− vk(α)

)
hk, vk(α) =

w1−α
k∑

l w
1−α
l

. (51)

The OVISMC formulation holds using dk = 1
1−α log Ẑ(α)−vk(α) within the equation 12. Similarly

for the asymptotic expression OVIS∼, the unified control variate 17 becomes:

cγk := log
1

1− α
log Ẑ[−k](α)− γvk + (1− γ) log(1− 1/K) (52)

F Gradient Estimators Review

In this paper, gradient ascent is considered (i.e. maximizing the objective function). The expression
of the gradient estimators presented below are therefore adapted for this setting.

VIMCO The formulation of the VIMCO [14] control variate exploits the structure of Ẑ :=
1
K

∑
l wl using ck := ck(z−k) = log 1

K

∑
l ̸=k wl + ŵ[−k] where ŵ[−k] stands for the arithmetic or

geometric average of the weights wl given the set of outer samples z−k. Defining log Ẑ[−k] := ck,
the VIMCO estimator of the gradients is

∇ϕLK = Eqϕ(z1:K |x)

[
K∑

k=1

(
log Ẑ − log Ẑ[−k]

)
hk︸ ︷︷ ︸

(a)

+
K∑

k=1

vk∇ϕ logwk︸ ︷︷ ︸
(b)

]
. (53)

We refer to [14] for the derivation. Here, the term Ẑ[−k] can be expressed using the arithmetic and
the geometric averaging [14]. The leave-one-sample estimate can be expressed as

Ẑ[−k] =
1

K

∑
l ̸=k

wl + ŵ[−k] with

{
ŵ[−k] =

1
K−1

∑
l ̸=k wl (arithmetic)

ŵ[−k] = exp 1
K−1

∑
l ̸=k logwl (geometric)

(54)

The term (b) is well-behaved because it is a convex combination of the K gradients ∇ϕ logwk.
However, the term (a) may dominate the term (b). In contrast to VIMCO, OVIS allows controlling
the variance of both terms (a) and (b), resulting in a more optimal variance reduction. In the
Reweighted Wake Sleep (RWS) with wake-wake-ϕ update, the gradient of the parameters ϕ of the
inference network corresponds to the negative of the term (b).

Wake-sleep The algorithm [19] relies on two separate learning steps that are alternated during
training: the wake-phase that updates the parameters of the generative model θ and the sleep-phase
used to update the parameters of the inference network with parameters ϕ. During the wake-phase, the
generative model is optimized to maximize the evidence lower bound L1 given a set of observation
x ∼ p(x). During the sleep-phase, a set of observations and latent samples are dreamed from the
model: x, z ∼ pθ(x, z) and the parameters ϕ of the inference network are optimized to minimize
the KL divergence between the true posterior of the generative model and the approximate posterior:
DKL (pθ(z|x)||qϕ(z|x)).

Reweighted Wake-Sleep (RWS) extends the original Wake-Sleep algorithm for importance
weighted objectives [20]. The generative model is now optimized for the importance weighted
bound LK , which gives the following gradients

∇θLK = Eqϕ(z1:K |x)

[∑
k

vk∇θ logwk

]
(wake-phase θ) . (55)
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The parameters ϕ of the inference network are optimized given two updates: the sleep-phase ϕ an the
wake-phase ϕ. The sleep-phase ϕ is identical to the original Wake-Sleep algorithm, the gradients of
the parameters ϕ of the inference model are given by

−∇ϕEpθ(x) [DKL (pθ(z1:K |x)||qϕ(z1:K |x))] = Epθ(z1:K ,x)

[∑
k

hk

]
(sleep-phase ϕ) . (56)

The wake-phase ϕ differs from the original Wake-Sleep algorithm that samples x, z are sampled
respectively from the dataset and from the inference model qϕ(z|x). In this cases the gradients are
given by:

−∇ϕEp(x) [DKL (pθ(z1:K |x)||qϕ(z1:K |x))] = Ep(x)

[
Eqϕ(z1:K |x)

[∑
k

vkhk

]]
(wake-phase ϕ) .

(57)
Critically, in Variational Autoencoders one optimizes a lower bound of the marginal log-likelihood
(LK), while RWS instead optimizes a biased estimate of the marginal log-likelihood log p(x).
However, the bias decreases with K [20]. [9] shows that RWS is a method of choice for training
deep generative models and stochastic control flows. In particular, [9] shows that increasing the
budget of particles K benefits the learning of the inference network when using the wake-phase
update (Wake-Wake algorithm).

We refer the reader to [20] for the derivations of the gradients and [9] for an extended review of the
RWS algorithms for the training of deep generative models.

The Thermodynamic Variational Objective (TVO) The gradient estimator consists of express-
ing the marginal log-likelihood log pθ(x) using Thermodynamic Integration (TI). Given two un-
normalized densities π̃0(z) and π̃1(z) and their respective normalizing constants Z0, Z1 with
Zi =

∫
π̃i(z)dz given the unnormalized density π̃β(z) := π1(z)

βπ1−β
0 (z) parameterized by

β ∈ [0, 1], and the corresponding normalized density πβ(z) = π̃β(z)/
∫
π̃β(z)dz, TI seeks to

evaluate the ratio of the normalizing constants using the identity

logZ1 − logZ0 =

∫ 1

0

Eπβ

[
d log π̃β(z)

dβ

]
dβ . (58)

[21] connects TI to Variational Inference by setting the base densities as π̃0(z) = qϕ(z|x) and
π̃1(z) = pθ(x, z), which gives the Thermodynamic Variational Identity (TVI):

log pθ(x) =

∫ 1

0

Eπβ

[
log

pθ(x, z)

qϕ(z|x)

]
dβ. (59)

Applying left Riemannian approximation yields the Thermodynamic Variational Objective (TVO):

TVO(θ, ϕ,x) =
1

P

[
ELBO(θ, ϕ,x) +

P−1∑
p=1

EπβP

[
log

pθ(x, z)

qϕ(z|x)

]]
≤ log pθ(x) . (60)

Notably, the integrand Eπβ

[
log pθ(x,z)

qϕ(z|x)

]
is monotically increasing, which implies that the TVO is a

lower-bound of the marginal log-likelihood.

The TVO allows connecting both Variational Inference and the Wake-Sleep objectives by ob-
serving that when using a partition of size P = 1, the left Riemannian approximation of the
TVI, TVOL

1 (θ, ϕ,x) = ELBO(θ, ϕ,x) and the right Riemannian approximation of the TVI,
TVOU

1 (θ, ϕ,x) is an upper bound of the marginal log-likelihood and equals the objective being
maximized in the wake-phase for the parameters ϕ of the inference network.

Estimating the gradients of the TVO requires computing the gradient for each of the P expectations
Eπλ,β

[fλ(z)] with respect to a parameter λ := {θ, ϕ} where fλ(z) = log pθ(x,z)
qϕ(z|x) and x is fixed. In
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the general case, differentiation through the expectation is not trivial. Therefore the authors propose a
score function estimator

∇λEπλ,β
[fλ(z)] = Eπλ,β

[∇λfλ(z)] + Covπλ,β
[∇λ log π̃λ,β(z), fλ(z)] , (61)

where the covariance term can be expressed as

Eπλ,β

[(
fλ(z)− Eπλ,β

[fλ(z)]
) (

∇λ log π̃λ,β(z)− Eπλ,β
[∇λ log π̃λ,β(z)]

)]
. (62)

The covariance term arises when differentiating an expectation taken over a distribution with an
intractable normalizing constant, such as πβ(z) in the TVO. The normalizing constant can be
substituted out, resulting in a covariance term involving the tractable un-normalized density π̃β(z).
Hence, such a covariance term does not usually arise in IWAE due to the derivative of qϕ(z|x) being
available in closed form.

G Gaussian Model

Figure 5: Distribution of the gradients for an arbitrarily chosen component of the parameter b. The
tight control of the variance provided by OVIS allows keeping the distribution of gradients off-center.

Distribution of gradients We report the distributions of the 104 MC estimates of the gradient of
the first component b0 of the parameter b. Figure 5. The pathwise estimator and VIMCO yield
estimates which distributions are progressively centered around zero as K → ∞. The faster decrease
of the variance of the gradient estimate for OVIS results in a distribution of gradients that remains
off-centered.

Figure 6: Asymptotic analysis of the gradients for OVIS∼ and the STL and DReG IWAE estimators.

Analysis for advanced pathwise IWAE estimators We perform the experiment 3 using additional
pathwise estimators: STL [32] and DReG-IWAE [24]. Both the STL and OVIS∼(γ = 1) rely on
the suppression of the term

∑
k vkhk from the gradient estimate and adopt the same behaviour:

the variance decreases at a slower rate than OVIS∼(γ = 0) and DReG, however, its bias remains
constant as K is increased.
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Fitting the Gaussian Model

Figure 7: Fitting the Gaussian toy model from section 6.1 and measuring the L2 distance with the
optimal parameters as well as the variance and the SNR of the gradient estimates. OVIS methods
target the optimal parameters A⋆ of the inference network more accurately than the baseline methods.

We study the relative effect of the different estimators when training the Gaussian toy model from
section 6.1. The model is trained for 5.000 epochs using the Adam optimizer with a base learning
rate of 10−3 and with a batch-size of 100. In Figure 7, we report the L2 distance from the model
parameters A to the optimal parameters A⋆, the parameters-average SNR and parameters-average
variance of the inference network (ϕ = {A,b},M = card(ϕ)). We compare OVIS methods with
VIMCO, the pathwise IWAE, RWS and the TVO for which we picked a partition size P = 5 and
β1 = 10−3, although no extensive grid search has been implemented to identify the optimal choice
for this parameters.

OVIS yields gradient estimates of lower variance than the other methods. The inference network
solutions given by OVIS are slightly more accurate than the baseline methods RWS and the TVO,
despite being slower to converge. OVIS, RWS and the TVO exhibit gradients with comparable
SNR values, which indicate OVIS yield estimate of lower expected value, thus leading to a smaller
maximum optimization step-size. Setting γ = 0 for OVIS∼ results in more accurate solutions than
using γ = 1, this coincides with the measured ESS ≈ K.
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H Gaussian Mixture Model

Figure 8: Training curves for the Gaussian Mixture Model for different numbers of particles K =
[2, 5, 10, 20] samples averaged over 5 random seeds. The SNR is measured on one mini-batch and
averaged over the M parameters of the inference network. In contrast to VIMCO, OVIS estimators
all generate gradients with a higher SNR. This results in a more accurate estimate of the true posterior,
when compared to VIMCO and the baselines RWS and the TVO.

I Comparison of OVIS∼ and OVISMC with under a fixed Particle Budget

OVISMC has complexity requires K + S importance weights whereas OVIS∼ requires only K.
Estimating ϕ using OVISMC requires a budget of K ′ = K+S particles. The ratio S/K is a trade-off
between the tightness of the bound LK and the variance of the control variate estimate. In the main
text, we focus on studying the sole effect of the control variate given the bound LK . This corresponds
to a sub-optimal use of the budget K ′ because LK′ is tighter than LK . By contrast with the previous
experiments, we trained the Gaussian VAE using the budget K ′ optimally (i.e. relying on LK′

whenever no auxiliary samples are used). We observed that OVIS∼(γ = 1) outperforms OVISMC

despite the generative model is evaluated using LK′ in all cases (figure 9). This experiment will be
detailed in the Appendix.

Figure 9: Training the Gaussian VAE model with a fixed and optimally used particle budget K ′ =
K + S and α = 0.7.
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J Training Curves for the Deep Generative Models

J.1 Sigmoid Belief Network

Figure 10: Training curves for the Sigmoid Belief Network using K = [5, 10, 50] particles, using two
initial random seeds, with and without using the IWR bound. The number of active units is evaluated
as AU =

∑D
d=1 1

{
Covp(x)

(
Eqϕ(z|x) [zd]

)
≥ 0.01

}
[22] using 1000 MC samples for each element

of a randomly sampled subset of 1000 data points. Warming up the model by optimizing for the IWR
bound with α > 0 allows activating a larger number of units and results in models scoring higher
training likelihoods.
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J.2 Gaussian Variational Autoencoder

Figure 11: Training curves a Gaussian VAE using K = [5, 10, 50] particles and using two initial
random seeds. The OVIS estimators are used in tandem with the IWR bound with α fixed to 0.3.
OVIS for the IWR bound yields high-quality inference networks, as measured by the divergence
DKL (pθ(z|x)||qϕ(z|x)).
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K Implementation Details for OVIS∼

In order to save computational resources for large K values, we implement the following factorization

log Ẑ − log Ẑ[−k] = log
1− 1/K

1− vk
. (63)

In order to guarantee computational stability, we clip the normalized importance weights vk using the
default PyTorch value ϵ = 1.19e−7. The resulting gradient estimate, used in the main experiments, is

g :=
∑
k

(
log

1− 1/K

1−min(1− ϵ, vk)
+ (γ − 1)vk − (1− γ) log(1− 1/K)

)
hk . (64)

Clipping the normalized importance weights can be interpreted as an instance of truncated importance
sampling. Hence, the value of ϵ must be carefully selected. In the figure 12, we present a comparison
of OVIS∼ with and without clipping. The experiments indicate that the difference is insignificant
when using the default ϵ.

Figure 12: Effect of the importance weight clipping. Training the Gaussian Mixture Model, Sigmoid
Belief Network and Gaussian VAE with and without clipping.
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ABSTRACT

Although large language models (LLMs) often produce impressive outputs, they
also fail to reason and be factual. We set out to investigate how these limitations af-
fect the LLM’s ability to answer and reason about difficult real-world based ques-
tions. We applied the human-aligned GPT-3 (InstructGPT) to answer multiple-
choice medical exam questions (USMLE and MedMCQA) and medical research
questions (PubMedQA). We investigated Chain-of-thought (think step by step)
prompts, grounding (augmenting the prompt with search results) and few-shot
(prepending the question with question-answer exemplars). For a subset of the
USMLE questions, a medical domain expert reviewed and annotated the model’s
reasoning. Overall, GPT-3 achieved a substantial improvement in state-of-the-art
machine learning performance. We observed that GPT-3 is often knowledgeable
and can reason about medical questions. GPT-3, when confronted with a question
it cannot answer, will still attempt to answer, often resulting in a biased predictive
distribution. LLMs are not on par with human performance but our results suggest
the emergence of reasoning patterns that are compatible with medical problem-
solving. We speculate that scaling model and data, enhancing prompt alignment
and allowing for better contextualization of the completions will be sufficient for
LLMs to reach human-level performance on this type of task.

1 INTRODUCTION

Self-supervised pre-training promises to leverage the vast quantity of unlabelled data (text, images,
audio or videos) to learn general-purpose models that can then be applied to a myriad of downstream
problems. Language representations have transformed the field of natural language processing,
from simple word vectors (Mikolov et al., 2013; Pennington et al., 2014) to deep contextualized
representations (Peters et al., 2018; Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2018),
language models are now ubiquitous in natural language processing, notably, thanks to the success of
the Transformer architecture Vaswani et al. (2017) and its high compatibility with massively parallel
computation hardware.

In recent years, tremendous resources have been allocated to scale Transformer-based language
models Brown et al. (2020); Rae et al. (2021); Chowdhery et al. (2022); Thoppilan et al. (2022);
Hoffmann et al. (2022); Smith et al. (2022); Zhang et al. (2022); Lieber et al. (2021); Fedus et al.
(2021); Laurençon et al. (2022) to using hundreds of billions of parameters and to training on giga-
bytes of text. This translated in sustained improvements as measured by a wide variety of bench-
marks Srivastava et al. (2022). Large language models (LLMs) are expensive to train and require the
development of safeguards before being deployed into real-world systems. Notably, LLMs tend to
amplify the social biases present in the training data, have severe and easily exposable deficiencies
in their reasoning capabilities, make things up based upon the information stored in their param-
eters and there is no way to get pointers back to the source data they use to generate their output
(Bender et al., 2021). Therefore, deploying LLMs into sensitive areas such as healthcare must be
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operated with great care Korngiebel & Mooney (2021); Sezgin et al. (2022). Nonetheless, large lan-
guage models are powerful tools and therefore have the potential to transform the field of machine
intelligence.

Prompt-based learning Liu et al. (2021) opens a new way to interact with language models. Whereas
the fine-tuning paradigm requires refining the model’s parameters, prompt-based learning consists
in querying language models with a prompt that contains in-domain examples and/or a task descrip-
tion. In other words, prompt-based learning relies on natural language as a medium for learning to
solve new problems. Wei et al. (2022); Kojima et al. (2022) showed that prompts could be designed
to trigger LLMs to solve problems using step-by-step reasoning (chain-of-thought). This appeared
to be effective at solving problems requiring logic, including mathematical problems Lewkowycz
et al. (2022), which were thought to be the weakness of deep language models Rae et al. (2021).
Nonetheless, reasoning tasks remain overall challenging for LLMs Srivastava et al. (2022), espe-
cially some reasoning-heavy tasks like planning which are out of reach for these models Valmeekam
et al. (2022).

Kojima et al. (2022) showed that the prompt “Let’s think step by step” could trigger GPT-3 to gen-
erate multi-step reasoning. Largely inspired by this work, we study whether this technique can be
applied to solve medical problems, which require combining multi-steps reasoning, strong natural
language understanding capabilities and a high degree of medical knowledge. Applying LLMs to
the biomedical domain remains mostly an uncharted area, and early research indicates that prompt-
based learning is not yet competitive with other domain and task-specific BERT models Moradi
et al. (2021).

The main contributions of this paper are:

• A study of GPT-3’s performance with zero-shot chain-of-thought (CoT) prompting on
multiple-choice medical board exam question datasets (USMLE and MedMCQA) and a
medical reading comprehension dataset (PubMedQA).

• Showing that GPT-3 achieves state-of-the-art performance on the three datasets but is still
below human expert performance,

• Providing a medical expert evaluation of a small set of the generated chain of thoughts. The
expert review supports that GPT-3 in many cases can reason and exploit memorized expert
knowledge.

• Showing that grounding – augmenting the prompt with retrieved information – can be used
to improve performances.

• Showing that few-shot prompt-based learning can be used to answer medical questions
better, with and without chain-of-thought prompting.

2 BACKGROUND

Autoregressive models learn a left-to-right factorization of the data, they excel in modelling a wide
range of data modalities: images Salimans et al. (2017), audio Oord et al., videos Weissenborn
et al. (2019) and language Grave et al. (2016); Dai et al. (2019); Shoeybi et al. (2019). In particular
for text, autoregressive language modelling has proven to be a good objective for learning general-
purpose models that can be applied to solve a wide range of downstream tasks Radford et al. (2018;
2019); Brown et al. (2020). Scaling language models has so far proven to be a successful strategy
for improving language models Brown et al. (2020); Rae et al. (2021); Chowdhery et al. (2022);
Thoppilan et al. (2022); Srivastava et al. (2022).

There is hope that deep language models can acquire more than superficial statistical dependen-
cies between words: with scale, language models might learn meaningful language representations
Li et al. (2021) and might learn problem-solving skills such as common-sense, arithmetic, sym-
bolic and logical reasoning, planning and more. The BIG-Bench Srivastava et al. (2022) is a recent
community-wide initiative that aims at quantifying the large gap that remains between human and
LLM language capabilities.

Few-shot learning Pre-train, prompt and predict (Liu et al., 2021) is an emerging paradigm for
applying LLMs to new problems, without fine-tuning the weights. Prompt-based learning consists
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Table 1: Prompt templates. In the table below, we use typewriter style and brackets to represent
[provided data] such as the question, additional context, or the answer and <completions> generated
by GPT-3. We use the pipe symbol OR to indicate when a variable can be either [provided data] OR a
<completion>. The symbol H is used to represent empty strings.

Zero-shot H Zero-shot CoT
Question Question: [Question] Question: [Question]
CoT H Answer: Let’s think step by step <CoT>
Answer Answer: among A through D, the answer is <answer> Therefore, among A through D, the answer is <answer>

Zero-shot H + grounding One-shot CoT
Shot H Question: [Question]

H Answer: Let’s think step by step [Explanation] OR <CoT>
H Therefore, among A through D, the answer is [answer]

Context Context: [Context] H

Question Question: [Question] Question: [Question]
CoT H Answer: Let’s think step by step <CoT>
Answer Answer: among A through D, the answer is <answer> Therefore, among A through D, the answer is <answer>

in augmenting the problem with instructions such that the model’s completion of the prompt will
correspond to a solution. This allows for LLMs to learn from examples – or shots – which are simply
incorporated into the prompt. This few-shot learning technique has proven to be highly effective on
a wide range of tasks (Brown et al., 2020).

Nonetheless, zero-shot and few-shot learning might not always be sufficient to bridge the gap with
humans’ expectations, and further finetuning might not be avoidable. As an answer to this limita-
tion, Ouyang et al. (2022) introduced InstructGPT: a GPT-3 model finetuned using reinforcement
learning with human feedback to “follow the user’s instructions helpfully and safely”. InstructGPT
outperforms GPT-3 in diverse prompt-based learning scenarios.

Chain-of-Thoughts Wei et al. (2022) showed that LLMs could be applied to system 2 problems
by prompting the model to break the problem into reasoning that breaks into multiple steps, coined
“chain-of-thought” (CoT). This requires crafting prompts that trigger CoTs as completions for each
problem, which makes it difficult to apply to all datasets.

Kojima et al. (2022) demonstrated that CoTs can be generated using a single and domain-agnostic
prompt “Let’s think step by step” . The CoTs that resulted from that prompt not only appeared to
expose valid reasoning but also translated into dramatic improvements, as measured across multiple
benchmarks in a zero-shot setting.

Multiple CoTs can be sampled from the generative LLMs, which allows for potentially exploring
multiple hypotheses for a single problem. The multiple CoTs can be marginalized, or combined into
an ensemble of models. Wang et al. (2022); Li et al. (2022) showed that majority voting or learned
heuristics can be used to outperform single-sample CoT methods.

Grounding Large language models memorise part of the knowledge embedded into the training
data, nonetheless, models might fail to re-use this knowledge effectively during prediction. Con-
ditioning the predictions on a knowledge base is an alternative research direction for improving
language models (Lewis et al., 2020; Borgeaud et al., 2021; Lazaridou et al., 2022). Retrieving doc-
uments as part of solving downstream tasks corresponds to the open-domain setting in which the
model has access to all available knowledge Chen et al. (2017). Given a good information retrieval
system and a comprehensive knowledge base, a language model might solve downstream by relying
only on its reading comprehension capabilities.

3 PROMPT DESIGN FOR MEDICAL QUESTION ANSWERING

Prompting GPT-3 to answer multiple choice questions We studied two classes of prompts: the
CoT-free prompt, denoted H and a set of five zero-shot CoT prompts (Kojima et al., 2022). In the
case of the H prompt, we queried GPT-3 with a single prompt composed of the context, if any, and
the question followed by the extractive prompt which completion is the answer. When applying the
zero-shot CoT framework, we utilized ta two-steps prompting scheme with first a reasoning prompt
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Table 2: Selected CoT prompts. The prompt H corresponds to the CoT-free setting.

0 – H

1 – Let’s think step by step
2 – Let’s think step by step like a medical expert
3 – Let’s use step by step inductive reasoning, given the medical nature of the question
4 – Let’s differentiate using step by step reasoning like a medical expert
5 – Let’s derive the differential diagnosis

which completion is the CoT, and second and extractive prompt which completion is the answer. All
prompt designs are summarized in Table 1.

We researched whether domain-specific CoT prompts could be helpful. We tested the original
prompt from Kojima et al. (2022) (“Let’s think step by step”), a medical version of this prompt
(“Let’s think step by step like a medical expert”) and the top three best performing prompts among
an initial selection of 30 CoT prompts. The prompts were tested using a set of 100 exam questions
taken from the US Medical Licensing Examination (USMLE). The validation study can be found in
Appendix A. The selected prompts, including the CoT-free prompt, are summarized in Table 2.

Grounding We investigated whether grounding the model with further context could improve
the answering accuracy. We experimented with a simple BM25 retriever and used Wikipedia as
a knowledge base. The articles were converted into overlapping passages of size 100 words and
indexed along with the titles. Given a question q, an answer choice a, and weights β1 “ 1, β2 “

1, β3 “ 0.5, we retrieved passages based on a composite BM25 score defined as

scorepq,aq “ β1 ¨ BM25pq, contentq ` β2 ¨ BM25pa, contentq ` β3 ¨ BM25pa, titleq . (1)

For all the grounded experiments, except when dealing with the PubMedQA dataset, for which we
use the provided context, we prepend the question with the top-1 retrieved passage for each answer
choice.

Few-shot learning We experimented with inserting examplars (or shots) of question-answer pairs
in the prompts. We built each shot using the same template as for the zero-shot setting, except that
we replaced the answer prediction with the true answer. Additionaly, When using CoT prompting,
we either generated a CoT for each shot, replaced the CoT with the question explanation (when
provided), or omitted the CoT and the accompanying CoT prompt (results in Table 9). The one-shot
CoT prompt design is presented in Table 1.

4 EXPERIMENTS

We first introduce the three datasets, report the answering accuracy on all datasets and discuss the
success and failure patterns. Finally, we show that few-short learning could be used to improve
performances further. The code repository and samples of geenrated CoTs for each dataset can be
accessed at vlievin.github.io/medical-reasoning.

4.1 DATASETS

We focus the study on three medical multiple-choice question answering datasets: USMLE, MedM-
CQA and PubMedQA. The three datasets are summarized in Table 3. The USMLE and MedMCQA
datasets require retrieving further context from medical books or Wikipedia, which corresponds to
the open-domain setting (Chen et al., 2017). Both the MedMCQA and the PubMedQA datasets
come with detailed explanations for each question (long answer).

USMLE The USMLE (MedQA) dataset Jin et al. (2021) gathers historical questions from the
United States Medical Licensing Examination (USMLE), which targets trained medical profession-
als. The questions are notorious for being challenging as they often require strong problem-solving
skills coupled with comprehensive medical knowledge. Each question features a description of a
medical case and a question that emulates the real clinical setting.
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Table 3: Summary of the medical question answering datasets.

USMLE MedMCQA PubMedQA
# questions (train/valid./test) 10.2k/1.3k/1.3k 182.8k/4.2k/6.1k 450/50/500
# words / question 116.6 12.7 14.4
Answer options A/B/C/D A/B/C/D yes/no/maybe
Explanation length – 66.2 43.2
Context length – – 238.9

Data source National Medical Board
Examination (US)

AIIMS and NEET PG
entrance exams

expert-annotated PubMed
abstracts

MedMCQA The MedMCQA (Pal et al., 2022) is a large-scale multiple-choice question answering
collected from Indian medical school entrance exams (AIIMS and NEET-PG). The MedMCQA
covers a broad range of medical topics (dentistry, psychiatry, surgery, ...) and require being able to
follow a variety of reasoning types (logic, factual, comparison, ...).6

PubMedQA The PubMedQA dataset (Jin et al., 2019) is a collection of expert-annotated
yes/no/maybe research questions derived from PubMed abstracts. Whereas the questions from the
USMLE and the MedMCQA datasets are self-contained and might be answered using general medi-
cal knowledge and methodology, each PubMedQA question is contextualized on a provided abstract.
Therefore PubMedQA primalry focuses on evaluating reading comprehension skills.

4.2 ZERO-SHOT BENCHMARK

Table 4: Answering accuracy of GPT-3 on the USMLE dataset in a zero-shot setting.

model grounding CoT prompt accuracy (%) CoT length
GPT-3 ✗ 0 – H 46.0 0
GPT-3 ✗ 1 – Let’s think step by step 47.1 129
GPT-3 ✗ 2 – Let’s think step by step like a medical expert 46.8 173
GPT-3 ✗ 3 – Let’s use step by step inductive reasoning, (...) 46.0 171
GPT-3 ✗ 4 – Let’s differentiate using step by step reasoning (...) 45.6 207
GPT-3 ✗ 5 – Let’s derive the differential diagnosis step by step 45.1 199

GPT-3 ✓ 0 – H 47.3 0
GPT-3 ✓ 1 – Let’s think step by step 45.9 141
GPT-3 ✓ 2 – Let’s think step by step like a medical expert 47.0 172
GPT-3 ✓ 3 – Let’s use step by step inductive reasoning, (...) 45.6 165
GPT-3 ✓ 4 – Let’s differentiate using step by step reasoning (...) 45.9 196
GPT-3 ✓ 5 – Let’s derive the differential diagnosis step by step 47.4 195

GPT-3 ✗ 0+1+2+3+4+5 (majority voting, n=6) 50.0 –
GPT-3 ✓ 0+1+2+3+4+5 (majority voting, n=6) 49.3 –
GPT-3 ✗ + ✓ 0+1+2+3+4+5 (majority voting, n=12) 53.1 –

BioLinkBERT1 ✓ – 44.6 –
Human (passing score)2 ✓ – ě 60 –

We applied the largest human-aligned GPT-3 (InstructGPT, text-davinci-002, Ouyang et al.
(2022), 175B parameters) to answering medical questions in a zero-shot setting, with and without
chain-of-thought prompting, with and without grounding. We sampled one completion per prompt
with a temperature of zero and limited the completions to a maximum length of 1024 tokens. The
predicted answers were extracted from the completions following the method described in Kojima
et al. (2022).

1Results and model from Yasunaga et al. (2022)
2https://www.usmle.org/scores-transcripts
3Results from Pal et al. (2022), model from Gu et al. (2021)
4AIIMS: https://collegedunia.com/exams/aiims-mbbs/cutoff
5NEET PG: https://medicine.careers360.com/articles/neet-pg-cut-off
6In this version of the paper, we estimated the MedMCQA performances based on a subset of 1k validation

samples to limit the overall running costs
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Table 5: Answering accuracy of GPT-3 on the MedMCQA dataset in a zero-shot setting. GPT-3 is evaluated
on a subset of randomly sampled 1k validation questions whereas the baselines are evaluated on the whole set.
The accuracy is reported for the validation and test splits (reported as validation / test).

model grounding CoT prompt accuracy (%) CoT length
GPT-3 ✗ 0 – H 44.0 / – 0
GPT-3 ✗ 1 – Let’s think step by step 40.8 / – 140
GPT-3 ✗ 2 – Let’s think step by step like a medical expert 43.3 / – 143
GPT-3 ✗ 3 – Let’s use step by step inductive reasoning, (...) 38.8 / – 152
GPT-3 ✗ 4 – Let’s differentiate using step by step reasoning (...) 37.1 / – 156
GPT-3 ✗ 5 – Let’s derive the differential diagnosis step by step 42.1 / – 137

GPT-3 ✓ 0 – H 46.7 / – 0
GPT-3 ✓ 1 – Let’s think step by step 42.2 / – 149
GPT-3 ✓ 2 – Let’s think step by step like a medical expert 45.8 / – 170
GPT-3 ✓ 3 – Let’s use step by step inductive reasoning, (...) 41.6 / – 175
GPT-3 ✓ 4 – Let’s differentiate using step by step reasoning (...) 41.3 / – 185
GPT-3 ✓ 5 – Let’s derive the differential diagnosis step by step 41.8 / – 176

GPT-3 ✗ 0+1+2+3+4+5 (majority voting, n=6) 42.4 / – –
GPT-3 ✓ 0+1+2+3+4+5 (majority voting, n=6) 48.8 / – –
GPT-3 ✗ + ✓ 0+1+2+3+4+5 (majority voting, n=12) 47.6 / – –

PubMedBERT3 ✗ – 40 / 41 –
PubMedBERT3 ✓ – 43 / 47 –
Human (merit candidate) 3 ✓ – ě90.0 –
Human (passing score) 45 ✓ – ě50.0 –

Table 6: Answering accuracy of GPT-3 on the PubMedQA dataset in a zero-shot setting.

model grounding CoT prompt accuracy (%) CoT length
GPT-3 ✓ 0 – H 73.2 0
GPT-3 ✓ 1 – Let’s think step by step 60.0 170
GPT-3 ✓ 2 – Let’s think step by step like a medical expert 59.8 221
GPT-3 ✓ 3 – Let’s use step by step inductive reasoning, (...) 66.2 170
GPT-3 ✓ 4 – Let’s differentiate using step by step reasoning (...) 58.0 218
GPT-3 ✓ 5 – Let’s derive the differential diagnosis step by step 55.6 205

GPT-3 ✓ 0+1+2+3+4+5 (majority voting, n=6) 70.4 –

BioLinkBERT large3 ✓ – 72.2 –
Human ✓ – 78.0 –

Following Wang et al. (2022), we report performances using an ensemble of all the prompts using
majority voting. We report the human baselines and the current state-of-the-art BERT-based meth-
ods. We gathered all results, including the average number of generated tokens per chain-of-thought
in 4 for the USMLE dataset, in Table 5 for the MedMCQA dataset and in Table 6 for the PubMedQA
dataset.

Without CoT GPT-3 outperformed the domain-specific and finetuned BERT-based baselines on
the three datasets, despite not being explicitly trained to answer such questions. GPT-3 outperformed
the grounded BERT baselines on the USMLE exam questions (Table 4, 46.0% for GPT-3, 44.6% for
BERT), on the MedMCQA exam questions (Table 5, 44.0% for GPT-3, 43.0% for BERT) and on
the PubMedQA contextualized questions (Table 6, 73.2% for GPT-3, 72.2% for BERT).

With CoT Zero-shot CoT-free prompting remained a better alternative to zero-shot CoT prompt-
ing. Performances were lower for each of the CoT prompts compared to the CoT-free prompt, except
for the USMLE dataset for which half of the CoT prompts resulted in small improvements over the
CoT-free prompt H (47.1% accuracy using prompt number 1, 46.0% using prompt H).

Ensembling and Grounding The ensemble of prompts overall outperformed the single prompts
(50% on the USMLE dataset without grounding, 48.8% on the MedMCQA dataset with grounding).
The PubMedQA dataset is an exception: the ensemble of prompts did not outperform the single
CoT-free prompt H, which performed exceptionally well with an accuracy of 73.2%.
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In an attempt to exploit the good reading comprehension skills of GPT-3, we conditioned the com-
pletions of USMLE and MedMCQA questions on Wikipedia passages. When using the H prompt,
we recorded minor gains on the USMLE (+1.3%) and on the MedMCQA (+2.6%) datasetfoos.
However, using the ensemble of the six prompts, grounding marginally improved accuracy on the
MedMCQA dataset (+6.47%: 42.4% without grounding, 48.8% with grounding).

In the case of the USMLE dataset, we found that the grounding-free predictions still had to be
included in the ensemble to reach superior performances, which resulted in an outstanding accuracy
of 53.1% (12 predictions per question, six prompts, with and without grounding).

4.3 ANALYSIS OF THE SUCCESS AND FAILURE OF THE COTS

Table 7: Frequency of observed patterns (A, B, C, D, E and F) identified among 50 CoT based on USMLE
questions. The table is split based on the predicted answer (correct/incorrect). A CoT is labelled as containing
a pattern if it contains at least one observable sign.

Pattern Correct answers (16) Incorrect answers (34) Total (50)
A Correct reasoning step 94% (15) 59% (20) 70% (35)
B Correct recall of knowledge 87% (14) 65% (22) 72% (36)
C Correct reading comprehension 100% (16) 85% (29) 90% (45)

D Incorrect reasoning step 12% (2) 86% (29) 62% (31)
E Incorrect or insufficient knowledge 25% (4) 74% (25) 58% (29)
F Incorrect reading comprehension 6% (1) 50% (17) 36% (18)

We considered three general skills that we expect are required to be mastered to answer medical
questions: (1) performing non-trivial reasoning steps, (2) recalling knowledge that is not provided
in the context and (3) ability to comprehend the question and the context. Based on the three skills,
we defined three success patterns (A, B, C) and three failure patterns (D, E, F).

A subset of 50 CoTs generated based on USMLE questions were annotated by a medical expert
(CEH) using the six categories. For each category and each CoT, we reported a match if the pattern
could be observed. This means that a CoT can be labelled with both a correct and an incorrect
pattern for the same skill. We showcase three chain-of-thoughts (three in Table 10 with patterns
highlighted in the text whenever possible. 27 additional annotations are presented in Appendix C).

We report the frequencies of occurrence for the six patterns in Table 7. We found that most of the
questions answered incorrectly triggered generating CoTs that contained reasoning errors (pattern
D, 86%), and that showed a lack of knowledge (pattern E, 74%). Misunderstanding of the questions
or the context was less frequently observed (Pattern F, 50% ). We observed that CoTs leading to
questions answered correctly could exhibit failure patterns but we also observed that the CoTs lead-
ing to incorrect answers were not entirely incorrect, as 59% contained at least one correct reasoning
step, 65% of showed proper recall of knowledge. Furthermore, we inspected the CoTs leading to
wrong answers and found that 47% of those were inconclusive: GPT-3 couldn’t narrow down the
prediction to a single answer but considered multiple valid options.

4.4 ANSWERING BIAS

In Table 8, we report the frequencies of the predicted and the ground truth labels. We found that the
CoT-free prompt H was biased towards the label D, as the frequency of occurrence of the label D
was three times higher than the frequency of the label A. Querying GPT-3 using the CoT prompts
resulted in a more faithful predictive distribution of the labels. Nonetheless, a bias towards the
labels A and D and a tendency to avoid predicting labels B and C could still be observed. To confirm
whether this bias originates from the data or the model, we permuted the labels and repeated the
experiment for prompts number 0 and 1 and observed the same trend. Examples of such biased
predictions can be found in Table 15.
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Table 8: Classification bias of GPT-3 on the USMLE dataset, with and without label permutation. We use İ

and Ĳ to indicate whether a class frequency is significantly under or over estimated.

permuted labels reasoning prompt A B C D Accuracy (%)
✗ 0 – H 155İ 299 405Ĳ 414Ĳ 46.0
✗ 1 – Let’s think step by step 421Ĳ 240İ 291İ 321Ĳ 47.1
✗ 2 – Let’s think step by step like a medical expert 423Ĳ 211İ 286İ 353Ĳ 46.8
✗ 3 – Let’s use step by step inductive reasoning, (...) 416Ĳ 236İ 272İ 349Ĳ 46.0
✗ 4 – Let’s differentiate using step by step reasoning (...) 378Ĳ 221İ 294İ 380Ĳ 45.6
✗ 5 – Let’s derive the differential diagnosis step by step 392Ĳ 234İ 277İ 370Ĳ 45.1
✗ data 353 309 346 265 –

✓ 0 – H 138İ 295 377Ĳ 463Ĳ 46.5
✓ 1 – Let’s think step by step 374Ĳ 276İ 252İ 371Ĳ 45.3
✓ data 317 326 323 307 –

Table 9: Few-shots answering accuracy (%) based on 300 questions per dataset. When using CoT prompts,
shots are built (1) using the provided CoTs, (2) using the generated CoTs and (3) omitting the CoTs (H).

CoT prompt # shots shot CoT USMLE MedMCQA PubMedQA
H 0 – 45.6 43.3 73.7
H 1 H 47.3 46.0 60.0
H 3 H 49.3 50.3 66.0

Let’s think step by step 0 – 47.7 38.3 58.7

Let’s think step by step 1 provided – 44.0 69.0
Let’s think step by step 1 generated 51.3 40.0 62.3
Let’s think step by step 1 H 46.7 41.7 63.7

Let’s think step by step 3 provided – 51.0 69.7
Let’s think step by step 3 generated 46.3 45.0 70.1
Let’s think step by step 3 H 50.0 44.0 59.0

4.5 SCALE, ALIGNMENT AND PERFORMANCES

In Appendix B, we report the test USMLE accuracy for three other GPT-3 models: two smaller
models, trained without alignment (text-ada-001 and text-curie-001) and the largest
GPT-3 model trained without alignment (text-davinci-001). We found that smaller mod-
els deliver close to random performances, with a maximum accuracy close to 27.9% for both the
text-ada-001 model and for the text-curie-001 model. The non-aligned largest GPT-3
text-davinci-001 scored 40.2%, whereas the largest aligned model text-davinci-002
scored 47.1%.

4.6 FEW-SHOT PROMPTING

In this section, we study whether examples of answered questions could be used to increase perfor-
mances further. We focused on the prompt and on the original CoT prompt “Let’s think step by
step” and use a subset of 300 questions for each dataset.

We report the results in Table 9. We found that using few shots mostly improves accuracy when
compared to the zero-shot setting, with and without CoT prompting. Nonetheless they were excep-
tions: (1) the zero-shot CoT prompt outperformed all other prompts on the PubMedQA dataset, (2)
the 1-shot CoT prompt outperformed the 3-shots CoT prompt on the USMLE dataset. This suggests
that using more shots, or too long of a prompt, might not always yield better results.

Furthermore, in the case of the CoT prompt, we found that using the provided explanations as
CoT to build the shots mostly outperformed generating the CoTs for each shot. Nonetheless, using
generated CoTs or the provided CoTs to build the shots was overall better than omitting the CoT
step altogether.
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5 DISCUSSION

zero-shot GPT-3 outperforms BERT We observed that zero-shot GPT-3 could outperform
domain-specific and finetuned BERT models on three challenging question-answering datasets. In
the case of the USMLE and the MedMCQA datasets, the grounded BERT baselines were outper-
formed regardless of providing GPT-3 with additional Wikipedia passages, which implies that GPT-3
can not only reason about medical questions but also memorize and recall domain knowledge.

CoTs are interpretable, diverse and can be combined We found that single-sample CoT
prompting was not competitive with CoT-free prompting. Nonetheless, CoTs are interpretable and
multiple completions can be sampled when using non-zero temperature or when using multiple
prompts. This gives CoT prompting a unique advantage over CoT-free prompting. CoTs appeared
to be diverse, and different prompts appeared to trigger different strategies such as working by elim-
ination or manipulating equations (see Appendix A and C).

CoT samples can be combined and/or filtered using human or automated feedback (Wang et al.,
2022; Cobbe et al., 2021). In this study, combining prompts mostly resulted in higher answering
accuracy than when using prompts separately (section 4.2).

GPT-3 memorizes some expert knowledge GPT-3 memorizes domain knowledge, as suggested
by the qualitative evaluation (Section 7) and the good results obtained on the medical exam questions
without grounding. Despite the simplicity of the BM25 retriever and the conditioning scheme (one
sample per answer option), grounding GPT-3 resulted in slight improvements. This suggests that
GPT-3 is not ubiquitous and so (1) using stronger retrievers such as commercial search engines
(Lazaridou et al., 2022) or dense retrievers (Karpukhin et al., 2020), (2) using a more complete
knowledge base Borgeaud et al. (2021), or (3) leveraging inference-time compute by retrieving, re-
ranking and processing more passages (Lazaridou et al., 2022), might greatly improve performances.
In particular, we suspect that using a simplistic retriever strongly limited the grounded USMLE
experiments, which questions are much longer and much noisier than the ones from the MedMCQA
dataset.

Aligned LLMs benefit from example-based alignment Inserting exemplars in the prompts
mostly benefited answering accuracy (Section 4.6). Even if the shots were not directly related to
the question, they provided a signal that helped aligning the model with the task. This indicates that
further task-specific alignment might be necessary, even for the human-aligned InstructGPT.

Scale matters Only the largest GPT-3 models could answer medical questions in a zero-shot set-
ting (section 4.5). We speculate that the smaller models cannot hold the detailed factual knowledge
needed to answer specialized medical domain questions and that the ability to medical questions
only emerges in the largest models.

Prompt-based learning is fragile In section 4.4, we showed that different prompts induced dif-
ferent biases. In the case of the empty prompt H, the answer D was most often selected, which
might be due to its proximity to the generated answer. In the case of the CoT prompts, the labels
A and D were selected more often, which might be a result of often beginning CoTs with content
related to option A. Based on an inspection of the CoTs, we speculate that GPT-3 defaults to this
behaviour when it cannot answer but still attempts to complete the prompt with a default answer (D
or A). Recent research shows that LLMs mostly know what they don’t know (Kadavath et al., 2022)
and safeguards could be introduced to prevent such faulty behaviour.

In the few-shot experiments (section 4.6), worse results were obtained on the USMLE dataset when
using three shots than when using a single shot. On the PubMedQA datasets, the zero-shot CoT-free
prompt outperform all the other prompts, including the few-shot prompts. We speculate that long
prompts might be difficult for GPT-3 to interpret and that concatenation of shots might sometimes
be more confusing than it is helpful. Better models and better prompting schemes might overcome
this problem.

C – 9



Can Large Language Models Reason about Medical Questions?

6 CONCLUSION

We applied multiple prompting zero-shot and few-shot schemes to answer challenging medical ques-
tions. Zero-shot GPT-3 clearly outperformed the domain-specific BERT baselines, even when using
the simplest prompting schemes (no chain-of-thought (CoT), greedy decoding).

CoT prompting proved to be a powerful tool. By combining multiple CoTs, we found that GPT-3
can deliver unprecedented performances on medical questions. Furthermore, CoT prompting makes
zero-shot GPT-3 predictions interpretable, which revealed that CoTs in general exhibit good com-
prehension of the context, correct recall of expert-domain knowledge and non-trivial reasoning pat-
terns such as working by elimination or manipulating equations. We also observed that few-shot
prompt-based learning further improves performance.

Although impressive, the results are obviously below human expert level in terms of the performance
and the CoTs expose knowledge and reasoning shortcomings. Interestingly, the smaller GPTs per-
form close to random. This suggests that the GPT needs to be at a certain scale to hold non-trivial
knowledge. Scaling beyond the current InstructGPT will most likely lead to a substantial boost in
performance.

We are therefore looking forward to experimenting with the next generating of LLMs. Our work
suggests that LLMs combined with CoT prompting is a very promising candidate for building inter-
pretable healthcare support systems.
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Table 10: (Sample 1) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:731] Three days after induction chemotherapy, a 9-year-old boy is admitted to the
hospital for fever and neutropenia. He was initially diagnosed with t(9;22)-positive acute T cell
lymphoblastic leukemia following workup for fatigue and pancytopenia. He is fully conscious. His
blood pressure is 110/65 mm Hg, temperature is 39.5°C (103.1°F), pulse is 98/min, and respiratory
rate is 14/min. Physical examination including examination of the central venous catheter site shows
no source of infection. Broad-spectrum antibiotics are initiated. Which of the following factors
about this patient most strongly indicates a poor prognosis?
A) Age B) Cytogenetics C) Fever and neutropenia D) Initial presentation

✓ Let’s use step by step in-
ductive reasoning, given the
medical nature of the ques-
tion.
The first thing that stands out
is that the patient is 9 years
old. In general, children have
a better prognosis than adults
when it comes to leukemia.
The next thing to consider

is the patient’s cytogenetics.
The fact that the patient has
t(9;22)-positive acute T cell
lymphoblastic leukemia indi-
cates that the patient has a
specific chromosomal abnor-
mality that is associated with
a poor prognosis.

The next thing to con-
sider is the patient’s fever
and neutropenia. Fever and
neutropenia are both signs
of infection, and infection
is a serious complication in
leukemia patients, particu-
larly in those who are im-
munocompromised. Finally,
we need to consider the
patient’s initial presentation.
The fact that the patient
was initially diagnosed with
leukemia following workup
for fatigue and pancytope-
nia indicates that the patient’s
leukemia was advanced at the
time of diagnosis.
All of these factors indicate
a poor prognosis for this pa-
tient.
Therefore, among A
through D, the answer
is B, cytogenetics.

✗ Let’s think step by step
like a medical expert. The
first step is to gather informa-
tion about the patient. In this
case, we are given the follow-
ing information: -The patient
is 9 years old -The patient has
t(9;22)-positive acute T cell
lymphoblastic leukemia -The
patient is currently experienc-
ing fever and neutropenia
The next step is to analyze the
information and look for any
patterns or clues that could
help us answer the question.
In this case, the most im-
portant factor that indicates a
poor prognosis is the patient’s
age. Children under the age of
10 have a much higher chance
of relapsing after treatment
and a lower chance of achiev-
ing remission.
Therefore, among A
through D, the answer
is A.

✗ Let’s derive the differen-
tial diagnosis step by step:
1) The patient has fever and
neutropenia.
2) The patient is 9 years old.
3) The patient has t(9;22)-
positive acute T cell lym-
phoblastic leukemia.
4) The patient’s initial presen-
tation was fatigue and pancy-
topenia.
The most likely cause of the
patient’s fever and neutrope-
nia is infection. The patient’s
age, cytogenetics, and initial
presentation are all risk fac-
tors for infection.
Therefore, the factor that
most strongly indicates a poor
prognosis is the patient’s age.
Therefore, among A
through D, the answer
is A.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension
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Table 11: Validation performances for 30 CoT prompts on a subset of 100 validation USMLE questions.

prompt accuracy F1 CoT length
0 Let’s derive the differential diagnosis step by step 48.0% 48.0% 170
1 Let’s use step by step inductive reasoning, given the medical nature of the question 48.0% 48.2% 157
2 Let’s differentiate using step by step reasoning like a medical expert 47.0% 46.3% 183
3 Let’s think step by step using deductive reasoning 47.0% 46.4% 148
4 Let’s differentiate using step by step reasoning 45.0% 45.0% 166
5 Let’s think step by step to arrive at one of the options 45.0% 45.0% 158
6 Let’s break the problem into multiple steps 45.0% 44.2% 165
7 Let’s use step by step deductive reasoning, given the medical nature of the question 44.0% 44.0% 174
8 Let’s think step by step like a doctor 43.0% 43.3% 162
9 Let’s think step by step like a medical expert 43.0% 42.8% 171
10 Let’s summarize the facts step by step 42.0% 42.1% 183
11 Let’s think step by step using inductive reasoning 42.0% 42.6% 143
12 Let’s think step by step using deductive reasoning like a medical expert 42.0% 42.3% 173
13 Let’s be concise and think step by step 42.0% 42.4% 130
14 Let’s differentiate using step by step deductive reasoning like a medical expert 42.0% 41.9% 173
15 Let’s argue step by step 42.0% 42.2% 149
16 Let’s think step by step like a clinician 41.0% 41.3% 164
17 Let’s think step by step 40.0% 40.4% 129
18 Let’s reflect on each answer option step by step 40.0% 37.2% 194
19 Let’s reason and differentiate options step by step like a medical expert 40.0% 38.1% 180
20 Let’s differentiate using step by step inductive reasoning like a medical expert 40.0% 39.5% 161
21 H 39.0% 38.4% 0
22 Let’s think step by step given every option equal consideration 39.0% 39.2% 177
23 Let’s think step by step like a scientist 39.0% 39.2% 166
24 Let’s use step by step inductive reasoning 37.0% 36.1% 165
25 Let’s work by elimination step by step 36.0% 35.2% 154
26 Let’s use step by step deductive reasoning 34.0% 33.9% 165
27 Let’s follow a Bayesian step by step approach 33.0% 31.4% 193
28 Let’s reflect on each option from the least likely to the most likely 31.0% 27.9% 166
29 Let’s use step by step Bayesian reasoning, given the medical nature of the question 31.0% 30.7% 216

A PROMPT SELECTION

Benchmark We selected 30 zero-shot chain-of-thought prompts, including the reasoning-free
prompt H. In table 11, we report the accuracy for each of the 30 prompts based on a subset of 100
USMLE validation questions. Given an estimated accuracy uncertainty of 5% (see the paragraph
“uncertainty estimation” below), we concluded that the first half of the results are all reasonable
candidates for the study.

Prompt diversity and agreement In Figure 1, we report the agreement rate for all the 30 prompts
on the 100 validation questions. Whereas most of the prompts followed a rather consistent pattern,
with an agreement rate superior to 50%, a minority of the prompts seemed to agree less with the
majority of the prompts, such as “Let’s reflect on each answer option step by step”, “Let’s follow
a Bayesian step by step approach” or “Let’s work by elimination”. In Table 12, we showcase four
chain-of-thoughts selected to highlight the diversity of the completions and the ability of GPT-3 to
adopt diverse problem-solving strategies. Yet, strategies are not always executed correctly: in Table
12, example 2, GPT-3 ultimately finds the correct answer (Missense mutation) but identified the
wrong diagnostic (the 6-year-old boy suffers from sickle cell disease).

Uncertainty estimation We model the outcome of answering a question using a Bernoulli model
with parameter θ where 1 corresponds to the correct predicted answer, 0 corresponds to predicting
the wrong answer. The accuracy of the model corresponds to the mean outcome of the Bernoulli
model (E rBernoullipθqs “ θ) that we approximate as θ “ 0.5. Given N=100 data points, the uncer-
tainty of the accuracy estimate is about 5%, as given by standard deviation of the mean estimator:

a

VarN rBernoullipθqs “

c

θp1 ´ θq

N
“ 0.52{100 “ 0.05 p5%q .
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Figure 1: Rate of agreement for the 30 evaluated CoT prompts evaluated in Table 11.

B USMLE ACCURACY FOR SMALLER GPT-3 MODELS

We report the test USMLE accuracy for 2 smaller models (text-ada-001 and
text-curie-001) in Table 13 for the six prompts. We found that smaller models were
performing only slightly better than at random, with an accuracy of maximum 27.9% for the ada
model, and an accuracy of 27.8% for the curie model, whereas the largest model davinci
scored a maximum of 47.1% for all prompts. This suggests that advanced medical reasoning
capabilities only emerge in the largest of the GPT-3 models.

C ADDITIONAL SAMPLES

We provided nine more expert-labelled chain-of-thoughts in Tables 14, 15, 16, 17, 18, 19, 20, 21
and 22. Note that patterns reported in Table 7 cannot always be match to text segments, and one
highlighted text segment does not always correspond to a single category (reasoning and knowledge
patterns are often entangled).
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Table 12: A selection of remarkable chain-of-thoughts. GPT-3 can adopt diverse problem solving strategies.

Example 1. Applying Bayes rule Example 2. Considering multiple hypotheses
Parents bring an 11-month-old baby to the clinic because the
baby has a fever of 39.0°C (102.2°F). The baby is irritated and
crying constantly. She is up to date on immunizations. A com-
plete physical examination reveals no significant findings, and
all laboratory tests are negative. Five days after resolution of her
fever, she develops a transient maculopapular rash. What is the
most likely diagnosis?
A) Roseola B) Erythema infectiosum C) Rubella D) Kawasaki
disease

A 6-year-old African-American boy presents with severe pain
and swelling of both his hands and wrists. His symptoms on-
set 2 days ago and have not improved. He also has had diarrhea
for the last 2 days and looks dehydrated. This patient has had
two similar episodes of severe pain in the past. Physical examina-
tion reveals pallor, jaundice, dry mucous membranes, and sunken
eyes. Which of the following mutations is most consistent with
this patient’s clinical condition?
A) Chromosomal deletion B) Nonsense C) Missense D) Frame
shift

✓ Let’s follow a Bayesian step by step approach:
The prior probability of the child having each disease is:
Roseola: 1/4
Erythema infectiosum: 1/4
Rubella: 1/4
Kawasaki disease: 1/4

The likelihood of the child having each disease given the
symptoms is:
Roseola: 3/4
Erythema infectiosum: 1/2
Rubella: 1/4
Kawasaki disease: 1/8

The posterior probability of the child having each disease is:
Roseola: 3/4 x 1/4 = 3/16
Erythema infectiosum: 1/2 x 1/4 = 1/8
Rubella: 1/4 x 1/4 = 1/16
Kawasaki disease: 1/8 x 1/4 = 1/32

The most likely diagnosis is Roseola.
Therefore, among A through D, the answer is A.

✓ Let’s derive the differential diagnosis step by step:
1. Severe pain and swelling of hands and wrists: This can be
caused by an inflammatory process (e.g. arthritis), an infection
(e.g. septic arthritis), or trauma.

2. Diarrhea for 2 days: This can be caused by an infection (e.g.
gastroenteritis), food poisoning, or a gastrointestinal disorder
(e.g. inflammatory bowel disease).

3. Pallor, jaundice, dry mucous membranes, and sunken eyes:
These are all signs of dehydration.

4. Two similar episodes of severe pain in the past: This suggests
a chronic condition.

Based on the above information, the most likely diagnosis is a
chronic inflammatory condition such as arthritis or inflammatory
bowel disease. The mutation that is most consistent with this
patient’s clinical condition is a missense mutation.

Therefore, among A through D, the answer is C.

Example 3. Reflecting on each answer choice Example 4. Working by elimination
A 12-month-old girl is brought in by her mother to the pediatri-
cian for the first time since her 6-month checkup. The mother
states that her daughter had been doing fine, but the parents are
now concerned that their daughter is still not able to stand up
or speak. On exam, the patient has a temperature of 98.5°F
(36.9°C), pulse is 96/min, respirations are 20/min, and blood
pressure is 100/80 mmHg. The child appears to have difficulty
supporting herself while sitting. The patient has no other abnor-
mal physical findings. She plays by herself and is making bab-
bling noises but does not respond to her own name. She appears
to have some purposeless motions. A previous clinic note doc-
uments typical development at her 6-month visit and mentioned
that the patient was sitting unsupported at that time. Which of
the following is the most likely diagnosis?
A) Language disorder B) Rett syndrome C) Fragile X syndrome
D) Trisomy 21

A 35-year-old man presents with loose stools and left lower quad-
rant abdominal pain. He says he passes 8–10 loose stools per day.
The volume of each bowel movement is small and appears mu-
coid with occasional blood. The patient reports a 20-pack-year
smoking history. He also says he recently traveled abroad about
3 weeks ago to Egypt. The vital signs include: blood pressure
120/76 mm Hg, pulse 74/min, and temperature 36.5°C (97.8°F).
On physical examination, mild to moderate tenderness to palpa-
tion in the left lower quadrant with no rebound or guarding is
present. Rectal examination shows the presence of perianal skin
ulcers. Which of the following is the most likely diagnosis in this
patient?
A) Amebiasis B) Crohn’s disease C) Salmonellosis D) Divertic-
ulosis

✗ Let’s reflect on each answer option step by step:
A) Language disorder: This cannot be the most likely diagnosis
because the patient is only 12 months old. It is too early to
diagnose a language disorder.

B) Rett syndrome: This is a possibility, but we cannot be certain
because the patient does not have all the symptoms of Rett
syndrome. The patient does have some purposeless motions,
but does not have any of the other symptoms, such as loss of
purposeful hand movements, deceleration of head growth, or
problems with gait or movement.

C) Fragile X syndrome: This is also a possibility, but we cannot
be certain because the patient does not have all the symptoms of
Fragile X syndrome. The patient does have some purposeless
motions, but does not have any of the other symptoms, such as
macroorchidism, long face, or large ears.

D) Trisomy 21: This is the most likely diagnosis because the
patient has some of the symptoms of Trisomy 21, such as a delay
in milestones, difficulty supporting herself while sitting, and
abnormal physical findings.

Therefore, among A through D, the answer is D.

✓ Let’s work by elimination step by step.
The first thing to note is that the patient has perianal skin ulcers.
This is not a symptom of Crohn’s disease, so we can eliminate
B.

The next thing to note is that the patient has recently traveled
to Egypt. This increases the likelihood that the patient has
amebiasis, so we can eliminate D.

The next thing to note is that the patient has a 20-pack-year
smoking history. This increases the likelihood that the patient
has diverticulosis, so we can eliminate C.

This leaves us with A, amebiasis, as the most likely diagnosis.

Therefore, among A through D, the answer is A.
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Table 13: Answering accuracy of multiple GPT-3 models on the USMLE dataset in a zero-shot setting.

model grounding reasoning prompt accuracy (%) reasoning length
GPT-3 text-ada-001 ✗ 0 – H 27.9 0
GPT-3 text-ada-001 ✗ 1 – Let’s think step by step 25.5 116

GPT-3 text-curie-001 ✗ 0 – H 27.8 0
GPT-3 text-curie-001 ✗ 1 – Let’s think step by step 25.5 136

GPT-3 text-davinci-001 ✗ 0 – H 37.2 0
GPT-3 text-davinci-001 ✗ 1 – Let’s think step by step 40.2 92

GPT-3 text-davinci-002 ✗ 0 – H 46.0 0
GPT-3 text-davinci-002 ✗ 1 – Let’s think step by step 47.1 129

BioLinkBERT1 ✓ – 44.6 –
Human (passing score)2 ✓ – ě 60 –
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Table 14: (Sample 2) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:1050] A 40-year-old female with a past medical history of high cholesterol, high blood
pressure, hyperthyroidism, and asthma presents to the primary care clinic today. She has tried several
different statins, all of which have resulted in bothersome side effects. Her current medications
include hydrochlorothiazide, levothyroxine, albuterol, oral contraceptives, and a multivitamin. Her
physical examination is unremarkable. Her blood pressure is 116/82 mm Hg and her heart rate is
82/min. You decide to initiate colesevelam (Welchol). Of the following, which is a concern with the
initiation of this medication?
A) Colesevelam can cause cognitive impairment.
B) Colesevelam can increase the risk of cholelithiasis.
C) Timing of the dosing of colesevelam should be separated from this patient’s other medica-
tions.
D) Colesevelam can significantly decrease your HDL.

✓ Let’s think step by step.
The patient has tried several

different statins, all of which
have resulted in bothersome
side effects.
The patient’s current medica-
tions include hydrochloroth-
iazide, levothyroxine, al-
buterol, oral contraceptives,
and a multivitamin.
The physical examination is
unremarkable.
The blood pressure is 116/82
mm Hg and the heart rate is
82/min.
You decide to initiate cole-
sevelam (Welchol). The con-
cern with the initiation of
this medication is that timing
of the dosing of colesevelam
should be separated from this
patient’s other medications.
Therefore, among A
through D, the answer
is C.

✗ Let’s think step by step
like a medical expert. The
first thing to consider is the
patient’s current medications.
The patient is currently taking
hydrochlorothiazide, levothy-
roxine, albuterol, oral con-
traceptives, and a multivita-
min. The next thing to con-
sider is the patient’s medi-
cal history. The patient has
a history of high cholesterol,
high blood pressure, hyper-
thyroidism, and asthma. The
third thing to consider is the
patient’s physical examina-
tion. The patient’s physical
examination is unremarkable.

The fourth thing to con-
sider is the patient’s blood
pressure and heart rate. The
patient’s blood pressure is
116/82 mm Hg and her heart
rate is 82/min. The fifth and
final thing to consider is the
medication that the doctor is
considering prescribing, cole-
sevelam (Welchol). The con-
cerns with the initiation of
this medication are that it can
cause cognitive impairment,
it can increase the risk of
cholelithiasis, timing of the
dosing of colesevelam should
be separated from this pa-
tient’s other medications, and
it can significantly decrease
your HDL.
Therefore, among A
through D, the answer
is D.

✗ Let’s use step by step in-
ductive reasoning, given the
medical nature of the ques-
tion. First, we know that the
patient has high cholesterol,
which is the main reason why
the physician would prescribe
colesevelam.
Second, we know that the pa-
tient has tried several different
statins, all of which have re-
sulted in bothersome side ef-
fects. Third, we know that
colesevelam can cause cogni-
tive impairment.
Fourth, we know that cole-

sevelam can increase the
risk of cholelithiasis. There-
fore, the correct answer is
D.) Therefore, among A
through D, the answer is D.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension

C – 22



Can Large Language Models Reason about Medical Questions?

Table 15: (Sample 3) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:805] A 79-year-old woman comes to the physician because of a 1-month history of
difficulty starting urination and a vague sensation of fullness in the pelvis. Pelvic speculum exam-
ination in the lithotomy position shows a pink structure at the vaginal introitus that protrudes from
the anterior vaginal wall when the patient is asked to cough. Which of the following is the most
likely cause of this patient’s symptoms?
A) Vaginal rhabdomyosarcoma B) Cystocele C) Rectocele D) Uterine leiomyomata

✓ Let’s use step by step in-
ductive reasoning, given the
medical nature of the ques-
tion. The first thing to note
is that the patient is an elderly
woman. This means that we
can rule out rhabdomyosar-
coma, which is a type of
cancer that is most commonly
found in children.

The next thing to note is
that the patient is experienc-
ing difficulty starting urina-
tion and a vague sensation
of fullness in the pelvis. This
could be caused by a number
of things, but the most likely
cause is a cystocele. A cysto-
cele is a condition in which
the bladder bulges into the
vagina. This can cause dif-
ficulty starting urination be-
cause the bladder is not able
to empty properly.
The final thing to note is that
the pelvic examination shows
a pink structure at the vaginal
introitus that protrudes from
the anterior vaginal wall when
the patient is asked to cough.
This is most likely a rectocele.
A rectocele is a condition in
which the rectum bulges into
the vagina. This can cause the
vague sensation of fullness in
the pelvis that the patient is
experiencing.
So, in conclusion, the most

likely cause of the patient’s
symptoms is a cystocele.
Therefore, among A
through D, the answer
is B.

✗ Let’s differentiate using
step by step reasoning like a
medical expert:
Differential diagnosis for a
pink structure at the vaginal
introitus that protrudes from
the anterior vaginal wall when
the patient is asked to cough:

1) Vaginal rhabdomyosar-
coma: This is a very unlikely
diagnosis given the patient’s
age and the lack of other
symptoms.
2) Cystocele: This is a pos-

sible diagnosis, but is more
likely to present with urinary
incontinence rather than diffi-
culty starting urination.

3) Rectocele: This is also
a possible diagnosis, but is
more likely to present with
constipation or difficulty hav-
ing a bowel movement.
4) Uterine leiomyomata: This
is the most likely diagnosis
given the patient’s age and
symptoms.
Therefore, among A
through D, the answer
is D.

✗ Let’s derive the differen-
tial diagnosis step by step.
The first step is to identify

the relevant anatomy. The
relevant anatomy here is the
pelvic floor, which includes
the vagina, uterus, bladder,
and rectum.
The second step is to iden-
tify the relevant symptoms.
The relevant symptoms here
are difficulty starting urina-
tion and a vague sensation of
fullness in the pelvis.
The third step is to iden-
tify the possible causes of
the symptoms. The possible
causes of the symptoms could
be a mass in the pelvis, an ob-
struction in the urinary tract,
or a problem with the pelvic
floor muscles.
The fourth step is to narrow

down the differential diagno-
sis. The most likely cause of
the patient’s symptoms is a
mass in the pelvis. The mass
could be a cystocele, recto-
cele, or uterine leiomyomata.
Therefore, among A
through D, the answer
is D.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension
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Table 16: (Sample 4) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:951] A 22-year-old woman comes to the physician for a routine health examination.
She feels well but asks for advice about smoking cessation. She has smoked one pack of cigarettes
daily for 7 years. She has tried to quit several times without success. During the previous attempts,
she has been extremely nervous and also gained weight. She has also tried nicotine lozenges but
stopped taking them because of severe headaches and insomnia. She has bulimia nervosa. She
takes no medications. She is 168 cm (5 ft 6 in) tall and weighs 68 kg (150 lb); BMI is 24 kg/m2.
Physical and neurologic examinations show no other abnormalities. Which of the following is the
most appropriate next step in management?
A) Diazepam B) Nicotine patch C) Varenicline D) Motivational interviewing

✓ Let’s think step by step.
The first thing we need to do
is assess whether this patient
is ready to quit smoking. This
can be done using the 5 A’s:
1. Ask the patient if they
smoke
2. Advise the patient to quit
3. Assess the patient’s will-
ingness to quit
4. Assist the patient in quit-
ting
5. Arrange follow-up care
If the patient is not ready to

quit, then the best next step
would be motivational inter-
viewing. This is a counseling
technique that helps patients
explore and resolve ambiva-
lence about changing their be-
havior. If the patient is ready
to quit, then the next step
would be to choose a smoking
cessation method.
The best method for this pa-
tient would be varenicline.
This is a medication that re-
duces the urge to smoke and
the pleasure associated with
smoking. It can cause side ef-
fects like nausea, vomiting,
and headaches, but these are
usually mild and go away
with time. Therefore, among
A through D, the answer is
C.

✗ Let’s think step by step
like a medical expert. The
first thing to consider is the
patient’s history of bulimia
nervosa. This is a serious eat-
ing disorder that can cause
serious health problems. Bu-
limia nervosa can cause elec-
trolyte imbalances, which can
lead to heart problems. It can
also cause dehydration, which
can lead to kidney problems.

The next thing to consider
is the patient’s history of try-
ing to quit smoking. The pa-
tient has tried to quit several
times without success. During
the previous attempts, she has
been extremely nervous and
also gained weight. She has
also tried nicotine lozenges
but stopped taking them be-
cause of severe headaches and
insomnia. Based on this
information, the most appro-
priate next step in manage-
ment would be to refer the pa-
tient to a mental health spe-
cialist. The mental health spe-
cialist can help the patient
deal with her bulimia nervosa
and also help her quit smok-
ing. Therefore, among A
through D, the answer is D.

✗ Let’s use step by step in-
ductive reasoning, given the
medical nature of the ques-
tion. The first thing we need
to do is look at the options
given and see if any can be
immediately eliminated. We
can see that option A, di-
azepam, is a medication, so
it can be eliminated. We are
looking for the most appro-
priate next step, not a medi-
cation. Option B, the nico-
tine patch, is a possibility. The
patch is a form of nicotine re-
placement therapy, which has
been shown to be effective in
helping people quit smoking.
Option C, varenicline, is also
a possibility. Varenicline is a
medication that helps to re-
duce the urge to smoke.
Option D, motivational inter-
viewing, is a possibility. Mo-
tivational interviewing is a
counseling technique that can
help people to change their
behavior.
So, which of these is the most
appropriate next step in man-
agement? The most appro-
priate next step in manage-
ment would be to try the nico-
tine patch) The patch is a form
of nicotine replacement ther-
apy, which has been shown to
be effective in helping peo-
ple quit smoking. Therefore,
among A through D, the an-
swer is B.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension
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Table 17: (Sample 5) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:201] A 17-year-old girl comes to the physician because of an 8-month history of
severe acne vulgaris over her face, upper back, arms, and buttocks. Treatment with oral antibiotics
and topical combination therapy with benzoyl peroxide and retinoid has not completely resolved
her symptoms. Examination shows oily skin with numerous comedones, pustules, and scarring over
the face and upper back. Long-term therapy is started with combined oral contraceptive pills. This
medication decreases the patient’s risk developing of which of the following conditions?
A) Hypertension B) Ovarian cancer C) Cervical cancer D) Breast cancer

✗ Let’s think step by step
like a medical expert. The
first thing to consider is the
patient’s age. The patient is 17
years old, which means she is
of reproductive age.
The next thing to consider is
the patient’s symptoms. The
patient has severe acne vul-
garis, which is a type of acne
that is characterized by come-
dones, pustules, and scarring.

The next thing to con-
sider is the patient’s treat-
ment. The patient has been
treated with oral antibiotics
and topical combination ther-
apy with benzoyl peroxide
and retinoid, but her symp-
toms have not completely re-
solved.
Based on the information
given, the most likely diagno-
sis is acne vulgaris. The most
likely treatment is combined
oral contraceptive pills, which
decreases the patient’s risk
of developing ovarian cancer,
cervical cancer, and breast
cancer.
Therefore, among A
through D, the answer
is D, breast cancer.

✗ Let’s differentiate using
step by step reasoning like a
medical expert:
A) Hypertension: This is not
a common side effect of com-
bined oral contraceptive pills.

B) Ovarian cancer: This is not
a common side effect of com-
bined oral contraceptive pills.

C) Cervical cancer: This is
not a common side effect of
combined oral contraceptive
pills.
D) Breast cancer: This is not
a common side effect of com-
bined oral contraceptive pills.
Therefore, among A
through D, the answer
is none of the above.

✗ Let’s derive the differen-
tial diagnosis step by step:
The patient has severe acne

vulgaris. Treatment with oral
antibiotics and topical com-
bination therapy with ben-
zoyl peroxide and retinoid has
not completely resolved her
symptoms.
Differential diagnosis:

1) Hormonal imbalance: This
could be due to an imbalance
in androgen levels, which can
lead to increased sebum pro-
duction and thus acne.
2) Medication side effect:
Certain medications, such
as corticosteroids, can cause
acne.
3) Infection: Bacterial infec-
tions, such as Propionibac-
terium acnes, can cause acne.
4) Genetics: Acne can be
hereditary. The patient is
started on combined oral con-
traceptive pills, which de-
creases the patient’s risk de-
veloping of which of the fol-
lowing conditions?
A) Hypertension B) Ovarian
cancer C) Cervical cancer D)
Breast cancer
The correct answer is D)
Breast cancer.
Therefore, among A
through D, the answer
is D.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension
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Table 18: (Sample 6) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:790] A 56-year-old patient is being treated with oral amoxicillin for community-
acquired pneumonia. The plasma clearance of the drug is calculated as 15.0 L/h. Oral bioavailability
of the drug is 75%. Sensitivity analysis of a sputum culture shows a minimal inhibitory concentra-
tion of 1 µg/mL for the causative pathogen. The target plasma concentration is 2 mg/L. If the drug
is administered twice per day, which of the following dosages should be administered at each dosing
interval to maintain a steady state?
A) 270 mg B) 480 mg C) 240 mg D) 540 mg

✗ Let’s think step by step.
The first thing we need to do
is calculate the patient’s daily
dose. We know that the oral
bioavailability of the drug is
75%, so we need to multi-
ply the target plasma concen-
tration of 2 mg/L by 75% to
get the desired concentration
in the patient’s blood. This
comes out to 1.5 mg/L.

Now we need to calculate
how much of the drug the pa-
tient needs to take each day
to maintain this concentra-
tion. We know that the plasma
clearance of the drug is 15.0
L/h, so the patient will need
to take 15.0 L/h / 24 h =
0.625 L/day of the drug. Now
we need to convert this into
mg/day. We know that 1 mg/L
= 1000 µg/L, so 1.5 mg/L =
1500 µg/L. This means that
the patient will need to take
1500 µg/day of the drug to
maintain a steady state.
Now we need to calculate the
dosage for each dosing inter-
val. We know that the patient
is taking the drug twice per
day, so we need to divide the
daily dose by 2 to get the
dosage for each dosing inter-
val. This comes out to 750
µg/dose.
Now we need to convert this
into mg/dose. We know that
1 mg = 1000 µg, so 750
µg/dose = 0.75 mg/dose.
The patient should be taking
0.75 mg of the drug at each
dosing interval.
Therefore, among A
through D, the answer
is C.

✗ Let’s think step by step
like a medical expert.
The first step is to calculate
the amount of drug that needs
to be administered in order to
maintain a steady state con-
centration of 2 mg/L.
The equation for this is:
(Concentration)(Clearance) =
(Dose)(Bioavailability) We
know that the concentration is
2 mg/L, the clearance is 15
L/hr, and the bioavailability is
75%. This leaves us with the
equation:
(2 mg/L)(15 L/hr) =
(Dose)(0.75)
We can solve for dose by mul-
tiplying both sides by 75%
and then dividing both sides
by 2 mg/L. This gives us:
(2 mg/L)(15 L/hr)(0.75) =
(Dose)(0.75)(0.75)
(2 mg/L)(15 L/hr)(0.75) =
(Dose)(0.5625)
Dose = (2 mg/L)(15
L/hr)(0.75) / (0.5625)
Dose = (30 mg/hr) / (0.5625)
Dose = 53.33 mg/hr
Now that we know the
amount of drug that needs
to be administered per hour,
we can calculate the amount
of drug that needs to be
administered at each dosing
interval.
Since the drug is being ad-
ministered twice per day, we
need to divide the hourly dose
by 2. This gives us the equa-
tion:
(53.33 mg/hr) / (2) = (Dose at
each dosing interval)
(53.33 mg/hr) / (2) = 26.67
mg
The answer is C) 240 mg
Therefore, among A
through D, the answer
is C) 240 mg.

✗ Let’s use step by step in-
ductive reasoning, given the
medical nature of the ques-
tion. 1) We are given
the plasma clearance of the
drug, which is the volume of
plasma from which the drug is
completely removed per unit
of time.
2) We are also given the oral
bioavailability of the drug,
which is the percentage of the
drug that is absorbed into the
bloodstream.
3) We know that the tar-
get plasma concentration is 2
mg/L.
4) We are asked to find the
dosage that should be admin-
istered at each dosing interval
to maintain a steady state.

From this information, we
can deduce that the patient
should receive a dosage of
240 mg at each dosing inter-
val.
Therefore, among A
through D, the answer
is C.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension
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Table 19: (Sample 7) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:629] A 16-year-old boy is brought to the emergency department by ambulance from
a soccer game. During the game, he was about to kick the ball when another player collided with
his leg from the front. He was unable to stand up after this collision and reported severe knee pain.
On presentation, he was found to have a mild knee effusion. Physical exam showed that his knee
could be pushed posteriorly at 90 degrees of flexion but it could not be pulled anteriorly in the
same position. The anatomic structure that was most likely injured in this patient has which of the
following characteristics?
A) Runs anteriorly from the medial femoral condyle B) Runs medially from the lateral femoral
condyle C) Runs posteriorly from the lateral femoral condyle D) Runs posteriorly from the medial
femoral condyle
✓ Let’s think step by step
like a medical expert.
1) What is the most likely di-
agnosis? The most likely di-
agnosis is a medial collateral
ligament (MCL) tear. 2)
What are the characteristics of
an MCL tear? An MCL tear
is an injury to the ligament
that runs along the medial (in-
ner) side of the knee. The
MCL helps to stabilize the
knee joint. 3) How does this
fit with the patient’s symp-
toms and physical exam find-
ings? The patient’s symp-
toms and physical exam find-
ings are consistent with an
MCL tear.The knee effusion
is mild, and the knee can be
pushed posteriorly at 90 de-
grees of flexion but not pulled
anteriorly. This is consistent
with an MCL tear.
Therefore, among A
through D, the answer
is D.

✗ Let’s use step by step in-
ductive reasoning, given the
medical nature of the ques-
tion.
The first thing to note is that

the patient has a mild knee ef-
fusion, meaning there is some
fluid in the knee joint. This is
likely due to injury.
Next, we note that the knee

cannot be pulled anteriorly at
90 degrees of flexion. This
suggests that the anterior cru-
ciate ligament (ACL) may be
injured. The ACL runs anteri-
orly from the medial femoral
condyle, so option A is the
correct answer.
Therefore, among A
through D, the answer
is A.

✗ Let’s differentiate using
step by step reasoning like a
medical expert:

1) The patient has a mild
knee effusion, meaning there
is some fluid in the knee joint.
This is likely due to injury.
2) The patient has pain when

the knee is pushed posteri-
orly at 90 degrees of flexion.
This suggests that the poste-
rior cruciate ligament (PCL)
is injured.

3) The patient cannot pull
the knee anteriorly in the
same position. This sug-
gests that the anterior cruci-
ate ligament (ACL) is also
injured. 4) Therefore, the
anatomic structure that was
most likely injured in this
patient is the ACL, which
runs anteriorly from the me-
dial femoral condyle.
Therefore, among A
through D, the answer
is A.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension
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Table 20: (Sample 8) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:757] An 18-year-old woman is brought to the emergency department because of light-
headedness and a feeling of dizziness. She has had nausea, occasional episodes of vomiting, myal-
gia, and a generalized rash for the past week. She also reports feeling lethargic. She has no shortness
of breath. There is no family history of serious illness. She appears ill. Her temperature is 39.1˝C
(102.3˝F), pulse is 118/min, and blood pressure is 94/60 mm Hg. Cardiac examination shows no
abnormalities. There is a widespread erythematous rash on the trunk and extremities with skin peel-
ing on the palms and soles. Laboratory studies show:
Hemoglobin 13.6 g/dL Leukocyte count 19,300/mm3 Platelet count 98,000/mm3
Serum Urea nitrogen 47 mg/dL Glucose 88 mg/dL Creatinine 1.8 mg/dL
Total bilirubin 2.1 mg/dL AST 190 U/L ALT 175 U/L
Urinalysis shows no abnormalities. Further evaluation of this patient’s history is most likely to reveal
which of the following?
A) Recent hiking trip B) Intravenous heroin abuse C) Exposure to a patient with mengingococcemia
D) Currently menstruating
✗ Let’s use step by step in-
ductive reasoning, given the
medical nature of the ques-
tion. The patient is 18 years
old, female, and has a gener-
alized rash, lightheadedness,
feeling of dizziness, nausea,
myalgia, and occasional vom-
iting. She also reports feeling
lethargic.
The patient’s laboratory
studies show: Hemoglobin
13.6 g/dL Leukocyte count
19,300/mm3 Platelet count
98,000/mm3
Serum Urea nitrogen 47
mg/dL Glucose 88 mg/dL
Creatinine 1.8 mg/dL
Total bilirubin 2.1 mg/dL
AST 190 U/L ALT 175 U/L

Urinalysis shows no abnor-
malities. The most likely
explanation for this patient’s
history is exposure to a pa-
tient with meningococcemia.
Therefore, among A
through D, the answer
is C.

✗ Let’s differentiate using
step by step reasoning like a
medical expert: The patient
has a widespread erythema-
tous rash on the trunk and ex-
tremities with skin peeling on
the palms and soles. This sug-
gests a possible diagnosis of
erythema multiforme, which
is most commonly caused by
a viral infection.

The patient has a history
of lightheadedness, dizziness,
nausea, vomiting, myalgia,
and a generalized rash. These
are all symptoms of menin-
gitis, which is a serious in-
fection of the membranes that
cover the brain and spinal
cord.

The patient has a history
of lightheadedness, dizziness,
nausea, vomiting, myalgia,
and a generalized rash. These
are all symptoms of menin-
gitis, which is a serious in-
fection of the membranes that
cover the brain and spinal
cord.
The patient has a history
of lightheadedness, dizziness,
nausea, vomiting, myalgia,
and a generalized rash. These
are all symptoms of menin-
gitis, which is a serious in-
fection of the membranes that
cover the brain and spinal
cord.
The patient has a history
of lightheadedness, dizziness,
nausea, vomiting, myalgia,
and a generalized rash. These
are all symptoms of menin-
gitis, which is a serious in-
fection of the membranes that
cover the brain and spinal
cord.
<This is not gener
ated by GPT-3: The
above paragraph was
repeated 15 more
times>
Therefore, among A through
D, the answer is C) Exposure
to a patient with meningococ-
cemia.

✗ Let’s derive the differen-
tial diagnosis step by step:
The patient has lightheaded-
ness, dizziness, nausea, vom-
iting, myalgia, and a gener-
alized rash. She also reports
feeling lethargic. She has no
shortness of breath. There is
no family history of serious
illness. She appears ill.
Differential diagnosis for
these symptoms includes:

1) Infectious diseases
(e.g. meningitis, meningo-
coccemia, influenza, viral
gastroenteritis) 2) Autoim-
mune diseases (e.g. lupus,
rheumatoid arthritis) 3)
Neurological disorders (e.g.
migraine, vertigo) 4) Gas-
trointestinal disorders (e.g.
food poisoning, gastroenteri-
tis) 5) Endocrine disorders
(e.g. Addison’s disease,
hypothyroidism) The pa-
tient’s temperature is 39.1˝C
(102.3˝F), pulse is 118/min,
and blood pressure is 94/60
mm Hg. Cardiac examination
shows no abnormalities.
There is a widespread ery-
thematous rash on the trunk
and extremities with skin
peeling on the palms and
soles. Laboratory studies
show:
Hemoglobin 13.6 g/dL
Leukocyte count 19,300/mm3
Platelet count 98,000/mm3
Serum Urea nitrogen 47
mg/dL Glucose 88 mg/dL
Creatinine 1.8 mg/dL Total
bilirubin 2.1 mg/dL AST 190
U/L ALT 175 U/L
Urinalysis shows no abnor-
malities. Differential diag-
nosis for these findings in-
cludes: 1) Infectious dis-
eases (e.g. meningococcemia,
sepsis) 2) Autoimmune dis-
eases (e.g. lupus, rheumatoid
arthritis) 3) Hematologic dis-
orders (e.g. leukemia, throm-
bocytopenic purpura) 4) Liver
disorders (e.g. hepatitis, fatty
liver disease) 5) renal failure
Further evaluation of this pa-
tient’s history is most likely
to reveal which of the follow-
ing?

The most likely answer
is C) Exposure to a pa-
tient with meningococcemia.
This patient presents with a
clinical picture and labora-
tory findings consistent with
meningococcemia, a poten-
tially life-threatening infec-
tion caused by the bacteria
Neisseria meningitidis.
Therefore, among A
through D, the answer
is C.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension
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Table 21: (Sample 9) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:286] A 27-year-old HIV positive female gave birth to a 7lb 2oz (3.2 kg) baby girl.
The obstetrician is worried that the child may have been infected due to the mother’s haphazard use
of her anti-retroviral medications. Which of the following assays would a hospital use detect the
genetic material of HIV if the child had been infected?
A) Enzyme-linked immunosorbent assay (ELISA) B) Rapid HIV antibody test C) Polymerase chain
reaction D) Southern blot

✓ Let’s use step by step in-
ductive reasoning, given the
medical nature of the ques-
tion.
The first step is to understand
the question. In this case, the
question is asking which of
the following assays would a
hospital use to detect the ge-
netic material of HIV if the
child had been infected.
The second step is to un-
derstand the options. In this
case, the options are enzyme-
linked immunosorbent assay
(ELISA), rapid HIV antibody
test, polymerase chain reac-
tion, and Southern blot.
The third step is to under-
stand what each option is.
Enzyme-linked immunosor-

bent assay (ELISA) is a test
that is used to detect antibod-
ies in the blood. Rapid HIV
antibody test is a test that is
used to detect HIV antibod-
ies in the blood. Polymerase
chain reaction is a test that is
used to amplify DNA. South-
ern blot is a test that is used to
detect DNA.
The fourth step is to under-
stand what the question is
asking. In this case, the ques-
tion is asking which of the fol-
lowing assays would a hospi-
tal use to detect the genetic
material of HIV if the child
had been infected.
The fifth step is to un-
derstand what each option
would do. Enzyme-linked im-
munosorbent assay (ELISA)
would not detect the genetic
material of HIV if the child
had been infected. Rapid HIV
antibody test would not de-
tect the genetic material of
HIV if the child had been in-
fected. Polymerase chain re-
action would detect the ge-
netic material of HIV if
the child had been infected.
Southern blot would detect
the genetic material of HIV if
the child had been infected.
The sixth and final step is to
choose the best option. In this
case, the best option is poly-
merase chain reaction.
Therefore, among A
through D, the answer
is C.

✓ Let’s differentiate using
step by step reasoning like a
medical expert.
The first step is to understand
what the question is asking. In
this case, the question is ask-
ing which assay would a hos-
pital use to detect the genetic
material of HIV if the child
had been infected.
The second step is to under-
stand what each option is.
Option A is the ELISA test,
which is a test that looks for
antibodies in the blood.
Option B is the Rapid HIV
antibody test, which is a test
that looks for antibodies in the
blood and can give results in
as little as 20 minutes.
Option C is the Polymerase
Chain Reaction test, which is
a test that looks for the ge-
netic material of the virus in
the blood.
Option D is the Southern blot
test, which is a test that looks
for the genetic material of the
virus in the blood and can be
used to confirm the results of
the PCR test.
The third step is to understand
what we are looking for. In
this case, we are looking for
the genetic material of HIV.
The fourth step is to eliminate
the options that are not related
to what we are looking for. In
this case, we are looking for
the genetic material of HIV,
so we can eliminate options A
and B because they are both
tests that look for antibodies
in the blood.
This leaves us with options C
and D.
The fifth step is to eliminate
the option that is not the best
answer. In this case, option C
is the best answer because it
is a test that looks for the ge-
netic material of the virus in
the blood.
Therefore, among A
through D, the answer
is C.

✓ Let’s derive the differen-
tial diagnosis step by step.

The first step is to con-
sider if the child was infected
in utero, during delivery, or
postnatally. If the child was
infected in utero or during de-
livery, then the child’s blood
would test positive for HIV
RNA. If the child was in-
fected postnatally, then the
child’s blood would test pos-
itive for HIV antibodies.
The second step is to consider
which test would be most ap-
propriate to confirm the diag-
nosis. ELISA and rapid HIV
antibody tests are used to
detect HIV antibodies. Poly-
merase chain reaction is used
to detect HIV RNA. South-
ern blot is used to detect HIV
DNA.
In this case, the most appro-
priate test to confirm the di-
agnosis would be polymerase
chain reaction, since the child
was likely infected in utero or
during delivery.
Therefore, among A
through D, the answer
is C.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension
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Table 22: (Sample 10) Generated zero-shot Chain-of-Thought from GPT-3 text-davinci-002 for three
CoT prompts on a sample for the USMLE test set.

USMLE [test:714] A 28-year-old male presents to the emergency department with chest pain. He
reports that one hour ago he was climbing the stairs in his home when he suddenly developed ex-
cruciating chest pain. He describes the pain as ripping and radiating to the back. The patient’s past
medical history is significant for a heart murmur that is being followed by his outpatient cardiologist.
He takes no medications. The patient works as a carpenter and reports being monogamous with his
wife. He denies any history of intravenous drug use or recent travel. In the emergency department,
the patient’s temperature is 99.4°F (37.4°C), blood pressure is 94/56 mmHg, pulse is 121/min, and
respirations are 14/min. On physical exam, the patient appears to be in moderate distress and is
clutching his chest. He is tall and has joint hypermobility. His breath sounds are equal and full
bilaterally and has weak distal pulses.
Which of the following is most likely to be found in this patient?
A) Holosystolic, high-pitched blowing murmur at the lower left sternal border B) Late systolic
crescendo murmur at the apex with mid-systolic click C) Mid-diastolic murmur at the left lower
sternal border D) Systolic ejection murmur at the right second intercostal space

✗ Let’s think step by step.
The patient has chest pain,

so we’re thinking about the
heart. The patient has a heart
murmur, so we’re thinking
about valvular disease. The
patient is tall and has joint hy-
permobility, so we’re think-
ing about Marfan syndrome.
The patient has weak dis-
tal pulses, so we’re thinking
about aortic dissection.
The most likely diagnosis
is aortic dissection. Aortic
dissection is a tear in the
aorta that can cause chest
pain. Aortic dissection can be
caused by Marfan syndrome,
which is a condition that af-
fects the connective tissue.
Marfan syndrome can cause
joint hypermobility and aortic
aneurysms.
Therefore, among A
through D, the answer
is D, systolic ejection mur-
mur at the right second
intercostal space.

✗ Let’s think step by step
like a medical expert.
The first thing to consider is
the patient’s symptoms. The
patient has chest pain that is
described as "ripping" and ra-
diating to the back.This sug-
gests that the pain is originat-
ing from the heart.
The second thing to consider
is the patient’s past medi-
cal history. The patient has
a heart murmur that is being
followed by an outpatient car-
diologist. This suggests that
the patient may have a heart
condition that is causing the
chest pain.
The third thing to consider is

the patient’s medications. The
patient is not taking any medi-
cations. This suggests that the
chest pain is not being caused
by a medication side effect.
The fourth thing to consider is
the patient’s occupation. The
patient is a carpenter. This
suggests that the chest pain
may be caused by physical ac-
tivity.
The fifth thing to consider
is the patient’s travel history.
The patient denies any recent
travel. This suggests that the
chest pain is not being caused
by travel.
The sixth thing to consider
is the patient’s intravenous
drug use history. The patient
denies any history of intra-
venous drug use. This sug-
gests that the chest pain is not
being caused by drug use.
The seventh thing to consider
is the patient’s physical exam-
ination. The patient appears to
be in moderate distress and
is clutching his chest. He has
weak distal pulses. This sug-
gests that the chest pain is
causing the patient to feel dis-
tressed and that the patient’s
heart may not be pumping
blood effectively.
Based on the above informa-
tion, the most likely cause of
the patient’s chest pain is a
systolic ejection murmur at
the right second intercostal
space.
Therefore, among A
through D, the answer
is D.

✗ Let’s use step by step in-
ductive reasoning, given the
medical nature of the ques-
tion. The first thing to note
is that the patient has a heart
murmur. This is significant
because it means that the pa-
tient is at risk for developing
heart problems.
The next thing to note is
that the patient is experienc-
ing chest pain. This is signif-
icant because it is a symptom
of a heart attack.
The third thing to note is that
the patient is tall and has joint
hypermobility. This is signifi-
cant because it means that the
patient is at risk for develop-
ing aortic dissection.

Based on the information
given, the most likely diagno-
sis is aortic dissection.
Therefore, among A
through D, the answer
is D.

Pattern A Correct reasoning step Pattern D Incorrect reasoning step
Pattern B Correct recall of knowledge Pattern E Incorrect or insufficient knowledge
Pattern C Correct reading comprehension Pattern F Incorrect reading comprehension
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ABSTRACT

We introduce the Variational Open-Domain (VOD) framework for end-to-end
training and evaluation of retrieval-augmented models (open-domain question
answering and language modelling). We show that the Rényi variational bound, a
lower bound to the task marginal likelihood, can be exploited to aid optimization
and use importance sampling to estimate the task log-likelihood lower bound and its
gradients using samples drawn from an auxiliary retriever (approximate posterior).
The framework can be used to train modern retrieval-augmented systems end-to-
end using tractable and consistent estimates of the Rényi variational bound and its
gradients. We demonstrate the framework’s versatility by training reader-retriever
BERT-based models on multiple-choice medical exam questions (MedMCQA
and USMLE). We registered a new state-of-the-art for both datasets (MedMCQA:
62.9%, USMLE: 55.0%). Last, we show that the retriever part of the learned
reader-retriever model trained on the medical board exam questions can be used in
search engines for a medical knowledge base.

1 INTRODUCTION

The triad of the Transformer architecture Vaswani et al. (2017) coupled with massively parallel com-
puting and trained with self-supervision on vast quantities of unlabelled text data has transformed the
field of natural language processing. Instances of the Transformer architecture, such as BERT (Devlin
et al., 2018) or GPT (Radford et al., 2018), have proven to be a valuable asset in several downstream
problems such as question answering, named entity recognition, translation, and summarization.

There is a growing interest in scaling Transformer-based language models to using larger datasets
and a gargantuan number of parameters. Scaling such models has resulted in sustained returns on
many downstream tasks.1 When applied to new tasks, large language models (LLMs) exploit the
knowledge that was implicitly retained in their weights during training. However, implicit encoding
of knowledge might be a factor that limits performances because i) the storage capacity of the model
is bounded by the number of parameters, ii) controlling for the quality of the embedded knowledge is
challenging iii) adapting to information that was not known at training time might require further
pre-training.

Instead of relying solely on implicit knowledge, language models can be augmented with large
external knowledge bases indexed with a retrieval mechanism. The technique was introduced initially
as open-domain question answering (ODQA) to answer questions using the whole Wikipedia (Chen
et al., 2017) and was later applied to language modelling (Guu et al., 2020; Lewis et al., 2020;
Borgeaud et al., 2021; Izacard et al., 2022). Language models coupled with a retrieval mechanism
might alleviate the shortcomings of implicit knowledge storage and retrieval because:

1. collections of documents can be arbitrarily large,

1See a extensive benchmark of large language models in Srivastava et al. (2022) and collection of large
language models in Brown et al. (2020); Rae et al. (2021); Chowdhery et al. (2022); Thoppilan et al. (2022);
Hoffmann et al. (2022); Smith et al. (2022); Zhang et al. (2022); Lieber et al. (2021); Fedus et al. (2021);
Laurençon et al. (2022)
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2. knowledge is encoded as text and can therefore be more easily curated,

3. the knowledge base can be modified or replaced at inference time.

A wide range of tools is available to implement document retrieval, such as the time-proven BM25
(Chen et al., 2017), commercial search engines (Lazaridou et al., 2022) or deep retrievers built using
language models. Unless there is a set of annotated evidence documents that are sufficiently aligned
with the target task, as explored in Karpukhin et al. (2020); Qu et al. (2021); Khattab & Zaharia
(2020), learning deep retriever is challenging. Lee et al. (2019) suggested modelling documents as a
latent variable which support is the whole collection of documents. Nonetheless, optimizing latent
variable models remains challenging, especially when modelling a discrete quantity.2

Contemporary research overcome training retrievers using a combination of (1) using annotated data
Karpukhin et al. (2020); Qu et al. (2021); Khattab & Zaharia (2020), (2) learning from an auxiliary
tasks such as the inverse cloze task (Lee et al., 2019; Izacard et al., 2021), and (3) estimating the
marginal task likelihood and its gradient (Lee et al., 2019; Guu et al., 2020; Lewis et al., 2020; Sachan
et al., 2021a; Paranjape et al., 2021), including disjoint training with knowledge distillation of the
reader score into the retriever Yang & Seo (2020); Izacard & Grave (2020a).

We revisit retrieval-augmented modelling using Rényi divergence variational inference (Li & Turner,
2016). We introduce a probabilistic framework that allows estimating the marginal task likelihood
and its gradients using samples drawn from an auxiliary retriever, or approximate posterior. The
approximate posterior can be chosen as a checkpoint of the main retriever, designed to use the task
target as input and/or trained jointly. We show that the Rényi variational bound, a lower bound of the
task marginal lower bound, can be used for stable likelihood-based training. The framework is generic
and can be applied to end-to-end joint optimization of extractive, generative and multiple-choice
ODQA models as well as training of retrieval-augmented language models. We applied the framework
to multiple-choice medical question-answering datasets. The main contributions of this paper are:

1. introducing the Variational Open-Domain (VOD) framework for end-to-end training, and
evaluation of retrieval-augmented models,

2. introducing a truncated retriever parameterization that allows relaxing the standard top-K
retriever approximation to using the top P ≥ K,

3. deriving tractable estimates of a log-likelihood lower-bound and its gradients using docu-
ments sampled without replacement (priority sampling),

4. showing that our estimates are consistent (i.e. converge to their true expected value),

5. scoring a new state-of-the-art on the MedMCQA (62.9%) and USMLE (55.0%) datasets,

6. showing that a retriever learned using VOD is competitive with specialized search engines.

Furthermore, we release three datasets:

1. MedWiki: a subset of Wikipedia targeted to the MedMCQA and USMLE dataset,

2. FindZebra corpus: a collection of 30.7k articles about rare diseases,

3. FindZebra queries: a subset of real-user search queries related to rare disease diagnosis.

2 A PROBABILISTIC FRAMEWORK FOR RETRIEVAL-AUGMENTED TASKS

In this section, we introduce Variational Open-Domain (VOD) framework in three acts. We introduce
the Rényi variational bound and its gradients. We describe a top-P truncated retriever parameterization
with P ≤ N where N is the number of documents in the corpus. We detail a method for tractable
estimation of the bound and its gradients using importance sampling with K ≤ P ≤ N samples.

2Learn more about discrete latent variable optimization in Hinton et al. (1995); Le et al. (2018); Mnih &
Gregor (2014); Mnih & Rezende (2016); van den Oord et al. (2017); Tucker et al. (2017); Grathwohl et al.
(2017); Masrani et al. (2019); Liévin et al. (2020).
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2.1 LOG-LIKELIHOOD LOWER BOUND AND GRADIENT

Let a question q be defined in a space Ω (e.g., the space of sequences of tokens) and the set of possible
answers be A ⊂ Ω with a correct answer denoted a ∈ A. We introduce a corpus of N documents
D := {d1, . . . ,dN} ∈ ΩN . In open-domain tasks, we are interested in modelling the marginal task
likelihood using a joint model pθ(a,d | q) parameterized by θ:

pθ(a | q) :=
∑
d∈D

pθ(a,d | q) . (1)

RÉNYI DIVERGENCE VARIATIONAL INFERENCE

We adopt a reader-retriever factorization of the joint-model pθ(a,d | q) := pθ(a | d,q)pθ(d | q)
and apply Rényi divergence variational inference (Li & Turner, 2016) to estimate the marginal task
likelihood using samples from an approximate posterior rϕ(d | a,q). The approximate posterior,
with parameters ϕ, can be defined using either a keyword-search engine (BM25), a checkpoint of
pθ(d | q), or another model learned jointly. Given a parameter α < 1, and the importance weight
wθ,ϕ(a,d) := pθ(a,d|q)/rϕ(d|a,q), we introduce the variational Rényi bound (RVB):

Lα(a,q) :=
1

1− α
logErϕ(d|a,q)

[
w1−α

θ,ϕ (a,d,q)
]
. (2)

The RVB is a lower bound of the marginal log-likelihood for α ≥ 0 its definition is extended in
α = 1 by continuity using Lα=1(a,q) := limα→1 Lα(a,q), which corresponds to the variational
lower-bound (ELBO Jordan et al. (1999)) denoted LVI(a,d). The three main properties of the RVB
are:

Lα=0(a,q) = log pθ(a | q) (3)
Lα≥0(a,q) ≤ log pθ(a | q) (4)
Lα=1(a,q) =Erϕ(d|a,q) [log pθ(a | d,q)]−DKL [rϕ(d | a,q)||pθ(d | q)] := LVI(a,q . (5)

GRADIENTS

The gradient of RVB w.r.t. the parameter θ are

∇θLα(a,q) = Erϕ(d|a,q)

[
w̃1−α

θ,ϕ (a,d,q)∇θ log pθ(a,d | q)
]

(6)

where the normalized weights are defined as w̃1−α
θ,ϕ (a,d) :=

w1−α
θ,ϕ (a,d,q)

Erϕ(d′|a,q)[w
1−α
θ,ϕ (a,d′,q)]

.

In this paper, we consider the approximate posterior rϕ to be static and therefore do not estimate the
gradient w.r.t. the approximate posterior. Optimizing the parameter ϕ jointly with θ can be done by
application of importance sampling coupled with variance reduction techniques (Burda et al., 2015;
Mnih & Rezende, 2016; Le et al., 2018; Masrani et al., 2019; Kool et al., 2019b; Liévin et al., 2020).

STABILIZING TRAINING USING THE RVB

For α = 0, the exact gradient of the parameter θ allows maximizing the marginal task likelihood,
which in expectation is independent of the choice of the approximate posterior. However, during
early training, the joint model pθ(a,d | q) might be uninformative and so might be the weight
wθ,ϕ(a,d,q) and the exact gradient in equation 6.

Optimizing the joint model pθ(a,d | q) using the ELBO coupled with an informative approximate
posterior circumvents this problem. For α = 1, the RVB matches the ELBO and the gradients
restricted to the reader and retriever parameters are

∇θ(READER)Lα=1(a,q) = Erϕ(d|a,q) [∇θ log pθ(a | d,q)] (7)

∇θ(RETRIEVER)Lα=1(a,q) = −∇θDKL [rϕ(d | a,q) || pθ(d | q)] . (8)

Maximizing the ELBO corresponds to optimizing the reader and the retriever disjointly. On the reader
side, this equals maximizing the answer likelihood pθ(a | d,q) in expectation over rϕ(d | a,q)
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independently of the value of pθ(d | q). On the retriever side, this corresponds to matching the
approximate posterior with the learned retriever pθ(d | q). This can be seen as an instance of
knowledge distillation of the posterior into the retriever. After an initial learning phase, the RVB can
be smoothly interpolated from the ELBO to the marginal task likelihood by controlling the parameter
α.

2.2 TRACTABLE ESTIMATION OF THE RVB

Computational efficiency is a key challenge in retrieval-augmented modelling. Under a budget of K
documents per question, we introduce a general definition of the retrievers that allows for relaxing the
top-K approximation of the retriever to using the top P ≥ K documents. Using sampling without
replacement, we then define a tractable and consistent estimate of the RVB and its gradient.

TRUNCATED RETRIEVER PARAMETERIZATION

Algorithm 1 Two-step sampling using truncated retrievers using efficient top-P retrieval.

Require: q,D = {d1, . . . ,dN} ∈ ΩN , K ≤ P ≤ N , fϕ : Ω2 → R
1: Tϕ ← argtopd∈D(fϕ(d,q);P ) // retrieve P documents using MIPS or BM25

2: d ∼ rϕ(d | q) ∝ 1[d ∈ Tϕ] exp fϕ(d,q) // sample d from the truncated multinomial

The distributions pθ(d | q) and rϕ(d | a,q) are defined on a potentially large number of documents
and, therefore, must be chosen with care to ensure the scalable estimation of the RVB. We parameterize
the retrieval distributions using score functions fθ : Ω2 → R and fϕ : Ω3 → R and restrict the both
distributions to the set Tϕ defined as the top P ≤ N documents ranked by the score fϕ(a,d,q):

pθ(d | q) :=
1[d ∈ Tϕ] exp fθ(d,q)∑

d′∈Tϕ
exp fθ(d′,q)

, rϕ(d | a,q) :=
1[d ∈ Tϕ] exp fϕ(a,d,q)∑

d′∈Tϕ
exp fϕ(a,d,q′)

. (9)

The score function fθ and fϕ can be implemented using BM25 and/or contextual vector representa-
tions extracted using pretrained language models such as DPR or ColBERT. For instance using a dual-
encoder model fθ(d,q) = BERTθ(d)

TBERTθ(q) and fϕ(a,d,q) = BERTϕ([q;a])
TBERTϕ(d)

where BERT is the function that return the output of a BERT model at the CLS token and [·; ·] is
the concatenation operator. Sampling documents using the truncated distribution can be split into
a two-step process described in Algorithm 1. The process can be efficiently implemented using
elasticsearch3 and/or faiss (Johnson et al., 2021).

The framework allows using full-range retrievers with P = N . However, using the truncated
retrievers with P ≪ N comes with two advantages: i) only the top-P document scores need to be
cached or retained in memory, and ii) the value P controls an exploration-exploitation threshold: a
higher value of P allows sampling a greater diversity of documents (exploration), but a smaller value
makes it more likely that all documents in the set Tϕ will be visited during training (exploitation).

IMPORTANCE SAMPLING ESTIMATES

Priority sampling We define S = {d1, . . . ,dK} ⊂ Tϕ a set of documents sampled without
replacement from rϕ(d | a,q) using priority sampling (Duffield et al., 2007). The sampling
procedure comes with importance weights s(d1), . . . , s(dK) defined such that for a function h(d),∑

d∈S s(d)h(d) ≈ Erϕ(d|a,q) [h(d)]. Standard priority sampling is unbiased but might suffer from
large variance. Therefore, we use a lower-variance self-normalized estimate (Kool et al., 2019a)
with weights s̃(d) = s(d)/

∑
d′∈S s(d

′). Self-normalized priority sampling 1) guarantees optimal
allocation of the computing resources by avoiding sampling the same documents multiple times, 2)
yields estimates that are, in general, of a lower variance than those estimated using Monte-Carlo with
replacement, and 3) is unbiased in the limit K = P . We detail priority sampling in Appendix A.

3http://www.elastic.co/
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RVB estimation In Appendix B, we derived importance-weighted estimates of the RVB and
included a discussion about their properties. In this section, we present the results of our derivations.

Evaluating the normalizing constant of pθ(d | q) at every training iteration is prohibitively ex-
pensive (complexity O(P )). Instead, we utilize the un-normalized retrieval density ratio ζ(d) :=
exp fθ(d,q)/exp fϕ(a,d,q) and estimate the RVB with:

Lα(a,q) ≈ L̂S
α(a,q) :=

1

1− α
log
∑
d∈S

s̃(d)

(
pθ(a | d,q)ζ(d)∑

d′∈S s̃(d
′)ζ(d′)

)1−α

(10)

and the gradient with ∇θLα(a,q) ≈
∑
d∈S

s̃(d) w̃1−α
θ,ϕ (a,d | S) ∇θ log pθ(a,d | q) (11)

where w̃1−α
θ,ϕ (a,d | S) := (ζ(d)pθ(a | d,q))1−α∑

d′∈S s̃(d
′) (ζ(d′)pθ(a | d′,q))

1−α . (12)

The term∇θ log pθ(a,d | q) = ∇θ log pθ(a | d,q) +∇θ log pθ(d | q) also requires an approxima-
tion to avoid expensive evaluations of the normalizing constant of pθ(d | q):

∇θ log pθ(d | q) ≈ ∇θfθ(d,q)−
∑
d′∈S

s̃(d′)ζ(d′)∑
d′′∈S s̃(d

′′)ζ(d′′)
∇θfθ(d

′,q) . (13)

All above estimates are of complexity O(K) and are consistent (i.e., converge to the true expected
value in the limit K = P with probability one). Furthermore, the standard importance-weighted
bound that we estimate with L̂S

α=0(a,q) is guaranteed to approximate the marginal task log-likelihood
more tightly as K → P (Burda et al., 2015).

3 APPLICATION TO MULTIPLE-CHOICE ODQA

In this section, we detail how to apply the VOD framework to multiple-choice question answering.
Nonetheless, VOD is general-purpose and We also detail how to apply VOD to generative and
extractive ODQA as well as to retrieval-augmented language modelling and FiD in Appendix C.

In the multiple-choice setting, we consider a vector of M answer options A := [a1, . . . ,aM ] and
denote ⋆ the index of the correct option. We define the vector of M queries as Q = [q1, . . . ,qM ]
with qj := [q;aj ] corresponding to the question concatenated with the answer option of index j.
We denote a vector of M documents D = [d1, . . . ,dM ] ∈ DM and the set of M combinations of
documents as D(M), which contains NM document vectors. We model the marginal likelihood as

pθ(a⋆ | Q) :=
∑

D∈D(M)

pθ(D | Q) pθ(a⋆ | D,Q) (14)

and introduce another score function denoted gθ : Ω2 → R to parameterize the reader. We adopt a
per-option truncated retriever pθ(d | q) parameterized by a score fθ as described in equation 9. The
reader and retriever models are defined as

pθ(a⋆ | D,Q) :=
exp gθ(d⋆,q⋆)∑M
j=1 exp gθ(dj ,qj)

, pθ(D | Q) :=

M∏
j=1

pθ(dj | qj). (15)

The approximate posterior is modelled as rϕ(D | A,Q) = rϕ(D | Q) =
∏M

j=1 rϕ(dj | qj) where
rϕ(dj | qj) = rϕ(dj | aj ,q). rϕ(dj | qj) adopts the truncated parameterization described in
equation 9 with score function fϕ(d,q). The RVB can be applied to pθ(a⋆ | Q) and so can the bound
and gradient estimates derived in sections 10 and 11. Estimating the RVB in the multiple-choice
setting requires sampling K documents per answer option. Read more details in Appendix C.3.

4 RELATED WORK

The VOD framework can be applied to evaluate and train model targeted to various tasks such as
question answering and language modelling (see Appendix C). Therefore, rather than focusing on the
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Table 1: Overview of retriever training techniques for a selection of retrieval-augmented methods.
We report whether the retriever is learned end-to-end with the reader (e.g., maximum likelihood),
whether the document retrieval mechanism can be conditioned on the task target (e.g., answer), and
report the range of the documents accessible at each training step (retriever support).

Method Retriever training
End-to-end

retriever learning
Target-aware

retrieval
Retriever
support

DPR (Karpukhin et al., 2020) Supervised ✗ ✓ top-K doc.
ColBERT (Khattab et al., 2021) Supervised ✗ ✓ top-K doc.
Contriever (Izacard et al., 2021) Self-supervised (improved ICT) ✗ – –
FiD (Izacard & Grave, 2020b) Frozen DPR dual-encoder ✗ ✗ top-K doc
RETRO (Borgeaud et al., 2021) Frozen BERT dual-encoder ✗ ✗ top-K doc
ORQA (Lee et al., 2019) ICT + Marginal LL* + frozen BERT doc. encoder (✓) ✗ top-K doc.
RAG (Lewis et al., 2020) Marginal LL* + frozen DPR doc. encoder (✓) ✗ top-K doc.
REALM (Guu et al., 2020) ICT + Marginal LL* ✓ ✗ top-K doc.
EMDR2 Sachan et al. (2021b) ICT + Expectation-Maximization ✓ ✗ top-K doc.
Hindsight (Paranjape et al., 2021) ColBERT init. + ELBO + marginal LL* ✓ ✓ top-K doc.

VOD Rényi variational bound ✓ ✓ top-P doc.†
*LL: likelihood, † K ≤ P ≤ N ( K the number of documents that fit in a training batch, N is the size of the corpus, P is chosen)

implementation, we discuss alternatives to optimizing deep retrievers. We present an overview of the
related methods with their corresponding references in Table 1.

Supervised retriever learning ORQA introduced the inverse cloze task (ICT), a self-supervised
task consisting in learning to match a text passage with its context. The ICT enables zero-shot
retrieval and has been widely adopted as a pretraining scheme. In contrast to this self-supervised
approach, DPR leverages questions paired with human-annotated and/or weakly-classified documents.
DPR remains a popular solution and is now found in various retrieval-augmented systems such as
RAG and FiD.

Top-K marginal likelihood ORQA, REALM, RAG all consider differentiating the top-K approxi-
mated marginal likelihood pθ(a | q) =

∑
d∈Tϕ

pθ(a,d | q) where Tϕ is the batch of top K = P

documents. EMDR2 and Hindsight also optimize the top-K marginal likelihood by maximizing
proxy objectives. EMDR2 relies on an Expectation-Maximization objective evaluated under the
posterior pθ(d | a,q) ∝ pθ(d | q)pθ(a | d,q). Hindsight optimizes the variational lower-bound
(ELBO) (Jordan et al., 1999) evaluated under a label-aware approximate posterior rϕ(d | a,q).

Variational Inference Maximizing the ELBO is effective as long as the inference gap DKL(rϕ(d |
a,q) || pθ(d | a,q)) = log pθ(a)− LVI(a,d) remains sufficiently small (see Cremer et al. (2018)).
Too large of a gap results in a discrepancy between training under rϕ(d | a,q) and evaluating under
pθ(d | q). Hindsight solves this issue by progressively replacing samples from rϕ(d | a,q) with
samples from pθ(d | q) during training. Using only samples from pθ(d | q) corresponds to using
the top-K marginal likelihood. VOD utilizes a tight log-likelihood lower bound (Burda et al., 2015)
that we approximate with L̂

Sϕ
α=0. In VOD, the tight lower bound can be interpolated with a looser

bound, the ELBO, by adjusting the parameter α. In contrast to Hindsight, our approach does not
require altering the sampling process. Aiding optimization with interpolating the RVB bound has
been explored in Liévin et al. (2020).

Indexing, caching and sampling Re-indexing the corpus at every step is prohibitively expensive.
Therefore, evaluating the marginal likelihood using samples from the trained retriever is too costly.
ORQA, RAG, and RETRO overcome this issue by freezing part of the retriever. REALM, EMDR2,
and Hindsight evaluate the objective asynchronously or periodically cached retriever scores, which
results in unaccounted approximations. VOD allows caching the retriever scores while keeping the
retriever fully trainable, thanks to modelling the retrieval process explicitly. Last, VOD introduces a
truncated retriever parameterization that generalizes the top-K common retrieval approximation and
allows handling a retriever using the entire corpus as support. However, we found that, in practice,
it is beneficial to restrict retrieval to the top-P documents with P ≥ K (exploration/exploitation
trade-off).
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Table 2: Summary of the medical question answering datasets and the information retrieval benchmark.
The number of tokens is measured for the base BioLinkBERT tokenizer, the mean [min. – max.]
values are reported.

MedMCQA USMLE FZ Queries

Answer type multiple-choice multiple-choice CUI (UMLS)
# questions (train/valid./test) 182.8k / 4.2k / 6.1k 10.2k / 1.3k / 1.3k – / – / 248
# tokens per question 19 [4 – 349] 158 [13 – 801] 17 [8 – 89]
# tokens per answer option 5 [3 – 60] 6.6 [3 – 61] –
Source AIIMS and NEET PG

entrance exams
National Medical Board

Examination (US)
search queries registered

on FindZebra

5 EXPERIMENTS

We present the tasks and datasets in the medical domain, showcase results on end-to-end multiple-
choice ODQA, and apply the trained models to information retrieval. The code for all experiments is
available at http://github.com/vlievin/fz-openqa.

5.1 DATA

The medical multiple-choice question answering datasets and the corpora are summarized in Table 2.

MedMCQA Pal et al. (2022) is a large-scale
multiple-choice question answering collected
from Indian medical school entrance exams (AI-
IMS and NEET-PG). The MedMCQA covers a
broad range of medical topics (dentistry, pathol-
ogy, surgery, preventive medicine, etc.) and many
question types (diagnosis, recalling expert factual
knowledge, mathematical problem, etc.)

USMLE Jin et al. (2021)) is a collection of
medical questions gathered from the US medi-
cal board exam. The questions aim to assess hu-
man doctors’ medical knowledge and demonstrate
decision-making. Each question includes a medi-
cal history followed by the vital signs (e.g., blood
pressure, temperature), and possibly a specific
analysis (e.g., CT-scan).

MedWiki We introduce the MedWiki corpus,
a collection of 4.5% of articles taken from the
English Wikipedia and targeted to the MedM-
CQA and USMLE datasets. The MedWiki corpus
was built by querying each answer option from
the MedMCQA and USMLE datasets against the
Wikipedia API. Read more in Appendix G.

MedWiki FindZebra
# articles 293.6k 30.7k
# passages 7,766.9k 711.9k

Table 3: Summary of the medical corpora.

FindZebra corpus & queries FindZebra is a search tool for helping the diagnosis of rare diseases.
It is built on open source information retrieval software (BM25) tailored to the problem.4 The
FindZebra corpus indexes a collection of curated articles gathered from GARD, GeneReviews,
Genetics Home Reference, OMIM, Orphanet, and Wikipedia. Each article is referenced with a
Concept Unique Identifier (CUI)5. Additionally, we release a collection of 280 search queries (FZ
queries) recorded on the platform. Each query is annotated with a CUI corresponding to the reference
search result.

The FindZebra and MedWiki datasets are available at http://huggingface.co/findzebra.

5.2 ODQA EXPERIMENTAL SETUP

We implement the retriever using a DPR-like dual-encoder with a shared backbone and implement the
multiple-choice reader following Devlin et al. (2018). We use the domain-specific BioLinkBERT Ya-
sunaga et al. (2022) as the backbone for both models and the MedWiki corpus for all QA experiments.

4http://findzebra.com
5CUIs are part of the Unified Medical Language System (UMLS, Bodenreider (2004))
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All experiments run on a single machine with eight RTX 5000 GPUs using half-precision for training
and evaluation. We provide further details in Appendix E.

Hybrid approximate posterior We parameterize the score fϕ of the posterior using a composite
BM25 score combined with a checkpoint of the retriever score fθ denoted f ckpt

ϕ . Specifically, we use

fϕ(a,d,q) := f ckpt
ϕ (d, [q;a]) + τ−1 (BM25(q,d) + β · BM25(a,d)) . (16)

where τ = 5 and β is a parameter scaled proportionally to the ratio of question and answer lengths
Lq/La to ensure that the BM25 score of the question does not outweigh the answer score. We use
β = 1 + 0.5 max {0, log (Lq/La)}. At initialization fθ is uninformative and thus we set f ckpt

ϕ = 0

Training, indexing and annealing We organize
the training into rounds of T steps as in Khattab
et al. (2021). At the beginning of each period,
for each question-answer pair qj , we retrieve the
set of top-P documents Tϕ and cache the set of
values {fϕ(d,q,aj) | d ∈ Tϕ}, except for the
first period where f ckpt

ϕ is set to zero. During
the first training round, we anneal the RVB pa-
rameter α from 1 to 0 to stabilize early training
by distilling the BM25 cached score fϕ(a,d,q) =
0+τ−1 (BM25(q,d) + β · BM25(a,d)) into the
trainable retriever score fθ(d,q), as pictured in
Figure 1. At each training iteration, we sample a
set of K = 8 document Tϕ for each of the M = 4
question-answer pairs and estimate the RVB and
its gradient using the cached values fϕ(d,q,aj)).

Figure 1: Annealing of the parameter α and
typical associated behaviour for the divergence
DKL (rϕ(d | q)||pθ(d | q)) when ϕ is chosen
as a checkpoint of θ, updated every T steps.
See empirical data in Appendix D.

Data augmentation The USMLE dataset is small and thus prone to overfitting. We tested training
with a concatenated dataset and training first on the MedMCQA, and then on the USMLE.

Baselines We compare the VOD framework with models reported in the literature and with the
human baseline. All models reported in the literature are trained disjointly, corresponding to a setup
identical to DrQA Chen et al. (2017). We trained disjoint BioLinkBERT readers with a BM25
retrievers by applying VOD with fθ(a,d,q) = fϕ(a,d,q) = BM25(q,d) + β · BM25(a,d). We
report the current state-of-the-art obtained using zero-shot GPT-3 combined with a BM25 retriever
and Chain-of-Thought (CoT) prompting Kojima et al. (2022). All the MedMCQA baselines use
Wikipedia as a knowledge base, whereas the USMLE baselines use the original MedQA corpus of 18
medical textbooks. We use the MedWiki corpus in all experiments.

Evaluation We estimate the likelihood for each answer option using C = 10 Monte-Carlo samples,
each containing MK = 4 · 8 = 32 documents using the estimates defined in equation 49.

5.3 ODQA ACCURACY

Figure 2: Per-category MedMCQA test accuracy for the VOD model trained on MedMCQA.
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Table 4: Open-domain question answering accuracy on the MedMCQA dataset.

Method Reader Retriever QA training set Valid. Test
VOD BioLinkBERT BM25 MedMCQA 51.6 55.3
VOD BioLinkBERT BioLinkBERT MedMCQA 58.3 62.9
Uniform baseline – – – 25.0 25.0
Disjoint1 PubMedBERT DPR MedMCQA 43.0 47.0
Zero-shot prompting2 GPT-3 – – 44.0 –
Zero-shot prompting2 GPT-3 BM25 – 46.7 –
Zero-shot CoT prompting2 GPT-3 BM25 – 48.8 –

Human (passing score)2 – – – ≥ 50 ≥ 50
Human (merit candidate)2 – – – ≥ 90 ≥ 90

1Pal et al. (2022), 2Liévin et al. (2022)

MedMCQA We report the validation and test accuracy of the VOD framework applied to Bi-
oLinkBERT (base) and the baselines in Table 4. VOD outperforms both the disjoint BERT-based and
the GPT-3 based with a new state-of-the-art test accuracy of 62.9%, an improvement of +15.9% over
the disjoint PubMedBERT reader coupled with a DPR retriever, and +7.6% improvement over the
BioLinkBERT reader with static BM25 retriever. Compared to the zero-shot GPT-3 coupled with a
simple BM25 retriever, VOD is 9.5% more accurate on the validation set.

In figure 2, we report the accuracy of the VOD model trained on MedMCQA for each of the question
categories reported in the test set. VOD performed exceptionally well (>70% test accuracy) for the
question related to anatomy, biochemistry, pathology, and pharmacology but performed significantly
worse (<60%) in dentistry, paediatrics, obstetrics and gynaecology (O&G), and Preventive & Social
Medicine (PSM).

Table 5: Open-domain question answering accuracy on the USMLE dataset.

Method Reader Retriever QA training set Valid. Test
VOD BioLinkBERT BM25 USMLE 41.0 40.4
VOD BioLinkBERT BioLinkBERT USMLE 45.8 44.7
VOD BioLinkBERT BioLinkBERT MedMCQA 47.2 46.8
VOD BioLinkBERT BioLinkBERT MedMCQA→ USMLE 53.6 55.0
Uniform baseline – – – 25.0 25.0
Custom BM251 – BM25 – 38.3 36.1
Disjoint2 PubMedBERT BM25 USMLE – 38.1
Disjoint3 BioLinkBERT BM25 USMLE – 40.0
Disjoint3 BioLinkBERT-L BM25 USMLE – 44.6
Zero-shot prompting4 GPT-3 – – – 46.0
Zero-shot prompting4 GPT-3 BM25 – – 47.3
Zero-shot CoT prompting4 GPT-3 BM25 – – 53.1

Human (passing score)4 – – – ≥ 60 ≥ 60

1Jin et al. (2021), 2Gu et al. (2021), 3Yasunaga et al. (2022), 4Liévin et al. (2022)

USMLE We report the validation and test accuracy in Table 5. We found that using VOD with a
BioLinkBERT backbone outperforms a BioLinkBERT reader coupled with a BM25 retriever, even
when using the larger version of BioLinkBERT (44.7% for VOD, 40.0% for disjoint BioLinkBERT,
44.6% for the disjoint large BioLinkBERT).

We found that pretraining ODQA models on the large MedMCQA results in higher accuracy on the
USMLE dataset. A VOD model pretrained on the MedMCQA delivers 46.8% test accuracy in a
zero-shot setting and a state-of-the-art of 55.0% test accuracy with further USMLE fine-tuning. This
outperforms the zero-shot CoT prompted and retrieval-augmented GPT-3 by +1.9%.
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5.4 INFORMATION RETRIEVAL

We tested whether retrievers trained using VOD could be applied to information retrieval. We
benchmark deep retrievers against the FindZebra API6 based on the set of FindZebra queries and
corpus. We applied the VOD retriever trained to use question-answer MedMCQA pairs [q;a] as input
and tested an additional model trained using distillation to use queries q as input. We also evaluated
a hybrid retriever with score fVOD+BM25

θ (d,q) := fθ(q,d) + τ−1 BM25(q,d) where τ = 5.

Task-specific distillation We use the VOD re-
triever trained using question-answer pairs as
a teacher to train an additional student Bi-
oLinkBERT model using questions only. This cor-
responds to applying knowledge distillation with
the loss:

LDISTILL. = DKL(rϕ(d | [q;a⋆]) || pθ(d | q)) .

Metrics We reduced the retrieved passages by ar-
ticle identifier and recorded the rank of the first arti-
cle linked to a CUI (disease concept) that matches
the labels. We report the mean reciprocal rank
(MRR) and the fraction of queries for which the
correct article is returned in the top 20.

Table 6: Retrieval performances on the FindZe-
bra benchmark for a BioLinkBERT retriever
trained using VOD on MedMCQA and one
trained using task-specific distillation, with
and without coupling with a BM25 score dur-
ing evaluation.

Method Distillation MRR Hit@20
VOD ✗ 27.8 56.9
VOD ✓ 31.7 58.1
VOD + BM25 ✓ 38.9 64.1
BM25 – 26.4 48.4
FindZebra API – 30.1 59.3

Performances The FindZebra API implements an advanced custom BM25 score (Dragusin et al.,
2013) which powers a specialized search engine utilized by many medical professionals. Nonetheless,
a retriever trained using VOD on the MedMCQA dataset is competitive with the API (31.8 MRR for
VOD, 30.1 MRR for the API). Coupling the distilled retriever with a simple BM25 baseline gave
the best performance with an MRR of 38.9. We found that task-specific distillation was beneficial
when applying multiple-choice ODQA retrievers to information retrieval: the task-specific distilled
retriever scored 3.9 MRR points above the reference retriever.

Retriever samples In Table 7, we report retrieved top-1 passages for the distilled retriever (two
successes and two failures). We found that search results were overall relevant and that terms from the
input medical description were utilized and matched beyond simple keyword searches. Nonetheless,
the deep retriever often fails when queried with longer comma-separated lists of keywords, as shown
in row #4. We speculate that the gap between the training and inference tasks remains large.

6 CONCLUSION

We have introduced VOD, a probabilistic framework for end-to-end training of retrieval augmented
models. VOD models the retrieval process explicitly using a target-aware posterior, allowing tractable
and consistent estimation of a marginal log-likelihood lower bound. We applied VOD to end-to-
end training of multiple-choice ODQA models and scored state-of-the-art results on two datasets.
Furthermore, we introduced a medical information retrieval benchmark, which we used to showcase
that retrievers trained with VOD can be competitive with industrial search engines.

Although we only applied the framework to the multiple-choice setting with a static approximate
posterior, VOD can be applied to a wide range of retrieval-augmented models. Alternatively, the
approximate posterior can be learned jointly. We hope our view of retrieval-augmented modelling
will spark further interest in designing and training likelihood-based models.
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Table 7: Top-1 passages retrieved for a selection of FindZebra queries with their annotated answer
CUIs and the rank of the first matching article for VOD and the FindZebra API. We showcase the
retriever model trained with task-specific distillation and without BM25 coupling (MRR 31.7). We
highlight terms from the queries and passages relevant to each other.

# Query Passage
1 Q: widespread musculoskeletal pain

for more than 6 months and point ten-
derness in at least 11 of 18 defined
anatomical sites
A: Fibromyalgia (C0016053)
Hit rank: VODBERT=1, FZAPI=1

Fibromyalgia. (...) for IL-1 receptor antagonist, IL-6 and IL-8.
Diagnosis The location of the nine paired tender points that comprise the 1990 American College of
Rheumatology criteria for fibromyalgia There is no single pathological feature, laboratory finding
or biomarker that can diagnose fibromyalgia and there is debate over what should be considered
diagnostic criteria and whether an objective diagnosis is possible. In most cases, people with
fibromyalgia symptoms may have laboratory test results that appear normal and many of their
symptoms may mimic those of other rheumatic conditions such as arthritis or osteoporosis. The
most widely accepted set of classification criteria for research purposes was elaborated in 1990
by the Multicenter Criteria Committee of the American College of Rheumatology. These criteria,
which are known informally as "the ACR 1990", define fibromyalgia according to the presence of the
following criteria: A history of widespread pain lasting more than three months – affecting all
four quadrants of the body, i.e., both sides, and above and below the waist. Tender points – there
(...)

2 Q: diagnosis for dementing syndrome
characterized primarily by impairment
of interpersonal and executive func-
tion
A: Frontotemporal dementia
(C0338451)
Hit rank: VODBERT=1, FZAPI=8

Frontotemporal dementia. (FTDs) are a group of neurodegenerative disorders associated with
shrinking of the frontal and temporal anterior lobes of the brain. Symptoms include marked
changes in social behavior and personality, and/or problems with language. People with behavior
changes may have disinhibition (with socially inappropriate behavior), apathy and loss of empathy,
hyperorality (eating excessive amounts of food or attempting to consume inedible things), agitation,
compulsive behavior, and various other changes. Examples of problems with language include
difficulty speaking or understanding speech. Some people with FTD also develop a motor syndrome
such as parkinsonism or motor neuron disease (which may be associated with various additional
symptoms).
There is a strong genetic component to FTDs. It sometimes follows an autosomal dominant inheritance
pattern, or sometimes there is a general family history of dementia or psychiatric disorders. The three
main genes responsible for familial FTD are MAPT, GRN, and C9orf72. However, the (...)

3 Q: syndrome characterized by cough,
reversible wheezing, and peripheral
blood eosinophilia
A: Asthma (C0004096), Reactive airway
disease (C3714497)
Hit rank: VODBERT=72, FZAPI=11

Löffler’s syndrome. (...) a parasitic infection such as irritable bowel syndrome, abdominal pain and
cramping, skin rashes and fatigue. Löffler’s syndrome itself will cause difficulty breathing, coughing
as well as a fever.
Contents
1 Diagnosis 2 Prevention 3 Epidemiology 4 History 5 See also 6 References 7 External links
Diagnosis The diagnosis of Loffler’s syndrome can be challenging, as the diagnostic criteria can
be vague and consistent with a multitude of diseases or conditions. The disease’s developmental
trajectory is mostly unknown. Upon examination of symptoms, a doctor will likely request a
chest x-ray looking for migratory pulmonary infiltrate, and blood testing, to confirm a diagnosis.
Symptoms tend to be brief, but can range from mild to severe and include: fever, vomiting, increased
respirations or difficulty breathing, cough, wheeze, and rash. Symptoms typically follow an
exposure to allergens or certain drugs, and last approximately two weeks. Eosinophilia is the main
feature of diagnostic (...)

4 Q: 5 year old, boy, congenital malforma-
tions, malformations of the hands and
feet, bilateral strabismus, small tongue,
impaired coordination, expressionless
face, prominent forehead, depressed
nasal bridge, hypoplastic thumbs, bilat-
eral adactyly of the feet, short stature,
severe myopia
A: Mobius Syndrome (C0221060), Mo-
bius II syndrome (C0853240)
Hit rank: VODBERT=∞, FZAPI=1

Achondroplasia. (...) hypochondroplasia, but the features of achondroplasia tend to be more severe.
All people with achondroplasia have short stature. The average height of an adult male with
achondroplasia is 131 centimeters (4 feet, 4 inches), and the average height for adult females is 124
centimeters (4 feet, 1 inch). Characteristic features of achondroplasia include an average-size trunk,
short arms and legs with particularly short upper arms and thighs, limited range of motion at the
elbows, and an enlarged head (macrocephaly) with a prominent forehead. Fingers are typically
short and the ring finger and middle finger may diverge, giving the hand a three-pronged
(trident) appearance. People with achondroplasia are generally of normal intelligence. Health
problems commonly associated with achondroplasia include episodes in which breathing slows or
stops for short periods (apnea), obesity, (...)
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A SAMPLING WITHOUT REPLACEMENT WITH PRIORITY SAMPLING

Figure 3: Estimation of µ = Ep[g] with pi :=
∑N

i=1
exp fi/

∑
j=1 exp fj , with fi ∼ N (0, 32) and

with N = 100. We apply standard Monte-Carlo, priority sampling and priority sampling with
self-normalized weights. We use gi = fi in the left side of the plot, and values gi ∼ N (0, 32)
sampled independently of fi in the right side. We report the 80% CI interval given 10000 estimates,
each with K = 1 . . . 100.

Given a set of probabilities p1, . . . , pN and a function with values f1, . . . , fN , priority sampling
Duffield et al. (2007) allows estimating the sum

∑N
i=1 pifi using a subset of K < N samples. For a

sequence of random weights u1, . . . , un
iid∼ Uniform(0, 1], we define the priority keys pi/ui, set τ

to be the K + 1-th largest key, and define the set of K samples S = {i ∈ [1, N ] | pi/ui > τ}. Using
importance-weights si := max(pi, τ), priority sampling is an unbiased estimate as:

Ep(u1,...,uN )

[∑
i∈S

sifi

]
=

N∑
i=1

pifi . (17)

We recommend Vieira (2017) for a great introduction to priority sampling.

Self-normalized importance sampling Empirically, the estimator 17 might suffer from high
variance. We follow Kool et al. (2019a) and use self-normalize importance weights defined as
s̃i := si/

∑
j∈S sj to reduce variance at the cost of introducing a bias. However, the estimator∑

i∈S s̃ifi is biased but consistent: it equals the true expected value for K = N . In Figure 3, we
visualize the variance of a standard Monte-Carlo (MC) estimator in two cases, a priority sampling
estimator and a priority sampling estimator with self-normalized weights. In both cases, the variance
of the self-normalized priority estimate is upper-bounded by the variance of the standard MC estimate
and converges to zero at a faster rate than the traditional MC estimator. In one of the two cases, the
un-normalized priority estimator suffers from large variance.

B ESTIMATION OF THE RVB USING IMPORTANCE SAMPLING

We first summarize the properties of the RVB, notably by documenting its relation with the standard
importance-weighted bound. As a second step, we derive the RVB estimates along with their
propoerties.

B.1 PROPERTIES OF THE RVB ESTIMATE

Relation to the standard importance-weighted bound Without priority sampling, without the
approximation of the normalizing constants, and using a set d1, . . . ,dK ∼ rϕ(d | a,q) sampled
with replacement, the original importance-weighted estimate

LK
α (d,q) :=

1

1− α
log

K∑
j=1

w1−α
θ,ϕ (a,dj ,q) (18)
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Figure 4: Log-likelihood, ELBO and RVB estimates for K = |S| samples. (Left) RVB for 0 < α1 <

α2 < 1 and the corresponding range of values for the importance-weighted estimate L̂S
α=α1

and its
estimate L̂S

α=α2
. (Right) Approximation of the log-likelihood using two RVB estimates: LK

α=0 the
standard importance-weighted bound (Burda et al., 2015), and our tractable estimation LS

α=0. We
schematize the range of values for the estimates and their expected values.

of the RVB is a lower-bound of the log-likelihood and for α = 0, increasing the number of samples
results in a tighter log-likelihood bound (Burda et al., 2015):

log pθ(a,q) ≥ LK+1
α=0 (d,q) ≥ LK

α=0 ≥ LVI(a,q) . (19)

However, the RVB estimate L̂S
α is only an approximation of the original importance-weighted bound.

Consistent estimation of the importance-weighted bound Our approximation to the importance-
weighted bound is biased because it involves two approximations:

1. we use priority sampling, which is unbiased but using self-normalized priority sampling is
biased but consistent (see section A)

2. we approximate wθ,ϕ(a,d,q) with a biased self-normalizing estimate, which is biased but
also consistent (see section B.2.1)

Because of this loss of unbiasedness, and in contrast to the standard importance-weighted bound, the
RVB estimate L̂S

α is not guaranteed to be a log-likelihood lower bound. Nonetheless, the RVB, the
gradient and the retriever log-density gradient are all consistent: they converge to their respective
expected value in the limit K = N (see sections B.2.1 and B.2.2).

In figure 4, we schematize the relationship between the log-likelihood, the RVB, and the range of
importance sampling estimates. Even though we cannot guarantee the unbiasedness of the estimate,
self-normalized estimates (such as ours) are widely used in the literature. We refer the reader to
Elvira & Martino (2021) for an updated review of importance sampling.

Complexity O(K) All estimates require one backbone (i.e., BERT) call to encode the query and
one call to encode each of the K sampled documents. Neglecting the other operations required to
evaluate the RVB, this results in a computational complexity of O(1 +K) ≈ O(K).

B.2 RATIO OF NORMALIZING CONSTANTS

The ratio of un-normalized retriever densities ζ(d) := exp fθ(d,q)/exp fϕ(a,d,q) can be used to
express the ratio of normalizing constants with the following equality:∑

d∈Tϕ
exp fθ(d,q)∑

d′∈Tϕ
exp fϕ(a,d′,q)

= Erϕ(d|a,q) [ζ(d)] . (20)
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We use the above equality to estimate wθ,ϕ(a,d,q) and ∇θ log pθ(d | q) during training and
evaluation. The equality arises from the definition of the right-hand term:

Erϕ(d|a,q) [ζ(d)] :=
∑
d∈Tϕ

rϕ(d | a,q)
exp fθ(d,q)

exp fϕ(a,d,q)
(21)

=
∑
d∈Tϕ

exp fϕ(a,d,q)∑
d′∈Tϕ

exp fϕ(a,d′,q)

exp fθ(d,q)

exp fϕ(a,d,q)
. (22)

B.2.1 RVB ESTIMATE

We apply self-normalized priority sampling (see Appendix A) to estimate Erϕ(d|a,q)

[
w1−α

θ,ϕ (a,d,q)
]
.

We denote S = {d1, . . . ,dK} the set of documents sampled without replacement and
s̃(d1), . . . , s̃(dK) the self-normalized priority importance weights. This gives an estimate of the
RVB that is consistent (i.e., it converges to the true value in the limit K = N with probability 1):

Lα(a,q) :=
1

1− α
logErϕ(d|a,q)

[
w1−α

θ,ϕ (a,d,q)
]

(23)

≈ 1

1− α
log
∑
d∈S

s̃(d)w1−α
θ,ϕ (a,d,q) := L̂S

α(a,q) . (24)

Evaluating the weights wθ,ϕ(a,d,q) requires estimating the normalizing constant of pθ(d | q), which
would require P backbone (e.g. BERT) calls. Using the identity 20, we obtain a self-normalized
estimate of the weight:

wθ,ϕ(a,d,q) :=
pθ(a | d,q)pθ(d | q)

rϕ(d | a,q)
(25)

=pθ(a | d,q)ζ(d)

( ∑
d′∈Tϕ

exp fθ(d
′,q)∑

d′∈Tϕ
exp fϕ(a,d,q′)

)−1

(26)

=pθ(a | d,q)ζ(d)
(
Erϕ(d|a,q) [ζ(d)]

)−1
(27)

≈ pθ(a | d,q)ζ(d)∑
d′∈Tϕ

s̃(d′)ζ(d′)
. (28)

This estimate requires only K ≤ P backbone calls and is consistent because the denominator
Erϕ(d|a,q) [ζ(d)] is estimated using a consistent self-normalized priority sampling estimator. Finally,
by combining the two previous steps, we obtain the estimate of the RVB defined in Equation 10. The
resulting RVB estimate is consistent because it combines consistent estimators.

B.2.2 RVB GRADIENT ESTIMATE

Using the results from the previous section, the gradient of the RVB w.r.t the parameter θ can be
estimated as:

∇θLα(a,q) :=Erϕ(d|a,q)

[
w̃1−α

θ,ϕ (a,d,q)∇θ log pθ(a,d | q)
]

(29)

:=Erϕ(d|a,q)

 w1−α
θ,ϕ (a,d,q)

Erϕ(d′|a,q)

[
w1−α

θ,ϕ (a,d′,q)
] ∇θ log pθ(a,d | q)

 (30)

≈Erϕ(d|a,q)


(
pθ(a|d,q)ζ(d)/

∑
d′′∈Tϕ

s̃(d′′)ζ(d′)

)1−α

Erϕ(d′|a,q)

[(
pθ(a|d′,q)ζ(d′)/

∑
d′′∈Tϕ

s̃(d′′)ζ(d′)

)1−α
] ∇θ log pθ(a,d | q)


(31)

≈
∑
d∈S

s̃(d) (pθ(a | d,q)ζ(d))1−α∑
d′∈S s̃(d) (pθ(a | d′,q)ζ(d))

1−α∇θ log pθ(a,d | q) . (32)
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Another approximation is required to estimate log pθ(a,d | q) = log pθ(q | d,q) + log pθ(d |
q) without evaluating

∑
d∈Tϕ

exp fθ(d,q). This approximation is also consistent because self-
normalized priority sampling is consistent:

∇θ log pθ(d | q) =∇θfθ(d,q)−∇θ log
∑

d′∈Tϕ

exp fθ(d
′,q) (33)

= ∇θfθ(d,q)−
∇θ

∑
d′∈Tϕ

exp fθ(d,q)∑
d′′∈Tϕ

exp fθ(d′′,q)
(34)

=∇θfθ(d,q)−
∑

d′∈Tϕ

pθ(d
′ | q)∇θfθ(d

′,q) (35)

=∇θfθ(d,q)−
∑

d′∈Tϕ

rϕ(d
′ | a,q) pθ(d

′ | q)
rϕ(d′ | a,q)

∇θfθ(d
′,q) (36)

=∇θfθ(d,q)−
∑

d′∈Tϕ

rϕ(d
′ | a,q) ζ(d′)

Erϕ(d′′|a,q) [ζ(d′′)]
∇θfθ(d

′,q) (37)

≈∇θfθ(d,q)−
∑

d′∈Tϕ

s̃(d′)ζ(d′)∑
d′′∈Tϕ

s̃(d′′)ζ(d′′)
∇θfθ(d

′,q) . (38)

C APPLICATIONS OF THE VOD FRAMEWORK

In this section, we detail how to apply the VOD framework to the tasks of language modelling as
well as extractive, generative and multiple-choice ODQA. We also detail a solution to optimizing
multi-documents readers (FiD) jointly.

C.1 GENERATIVE AND EXTRACTIVE ODQA

The model pθ(a|d,q) a machine reading comprehension component that can be implemented either
using an extractive approach, as done in the original BERT (Devlin et al., 2018), or using a generative
approach Lewis et al. (2019). Applying the VOD framework to generative and extractive ODQA
simply requires plugging the likelihood of the corresponding machine reading comprehension model
pθ(a|d,q) in the RVB and gradient estimates (equations 10 and 11).

C.2 RETRIEVAL-AUGMENTED LANGUAGE MODELLING

We consider the variable a = [a1, . . . ,aT ] to be the sequence of tokens of length T and omit the
condition q. We consider a left-to-right factorization pθ(a) :=

∏T
t=1 pθ(at|a<t) and define the

following retrieval-augmented language model with one retrieved document per token:

pθ(a) :=
T∏

t=1

∑
dt∈D

pθ(dt|a<t)pθ(at|dt,a<t) . (39)

We apply the RVB to each step t using an approximate posterior rϕ(dt|a), this results in the following
log-likelihood lower bound for α ≥ 0:

log pθ(a) ≥ log
T∏

t=1

Lα(at,a<t) (40)

=
1

1− α

T∑
t=1

logErϕ(d|a,q)

[
w1−α

θ,ϕ (at,dt,a<t)
]
. (41)

The above step-wise RVB Lα(at,a<t) can be estimated using equations 10 and 11.
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C.3 MULTIPLE-CHOICE ODQA

In the multiple-choice setting, a vector of M answer options A := [a1, . . . ,aM ] is given. We denote
a the correct option and assume a ∈ A. We define the vector of M queries as Q = [q1, . . . ,qM ]
with qj := [q;aj ] where [·; ·] denotes the concatenation operator. We denote× the Cartesian product,
D = [d1, . . . ,dM ] a vector of M documents, and D(M) := D× . . .× D the set of combinations of
vectors of M documents (NM document vectors). We choose:

pθ(a⋆|D,Q) :=
exp gθ(d⋆,q⋆)∑M
j=1 exp gθ(dj ,qj)

(42)

pθ(D|Q) :=

M∏
j=1

pθ(dj |qj) (43)

rϕ(D|A,Q) :=

M∏
j=1

rϕ(dj |qj) . (44)

Given a set of K documents Sj sampled without replacement from rϕ(dj |qj) for each option j and
with priority weights sj(dj), we denote S(M) := S1 × . . .× SM the Cartesian product of the sets of
per-option samples. Because the components of D are independent (equation 44), priority sampling
can be applied to the product rϕ(D|Q) with self-normalized weights s̃(D) :=

∏M
j=1 sj(dj). For an

arbitrary function h(D), we have:

Erϕ(D|Q) [h(D)] =Erϕ(d1|q1)

[
. . .Erϕ(dM |qM

[h(D)] . . .
]

≈
∑
d1∈D

s̃(d1) . . .
∑

dM∈D
s̃(dM )h(D)

=
∑

D∈S(M)

s̃(D)h(D) .

We have defined a model for multiple-choice and showed that priority sampling can be applied to the
product rϕ(D|Q) with weights s̃(D) :=

∏M
j=1 sj(dj), we will now show how the RVB estimates

can be adapted to the multiple-choice setting. The derivation is identical to the one presented in
section B. This arises from the fact that there are functions Fθ(D,Q) :=

∑M
j=1 fθ(dj ,qj) and

Fϕ(A,D,Q) :=
∑M

j=1 fϕ(dj ,qj) and a set T ϕ := {D ∈ D(M)|∀j ∈ [1,M ],d ∈ Tϕ(qj)}, the
ensemble of the top-P documents for each query qj , such that

pθ(D|Q) ∝1[D ∈ T ϕ] expFθ(D,Q) (45)
rϕ(D|A,Q) ∝1[D ∈ T ϕ] expFϕ(A,D,Q) . (46)

By applying the results from section B to A,D,Q with ζ(D) = expFθ(D,Q)/expFϕ(A,D,Q)
the RVB and its gradients can be estimated using:

Lα(a⋆,Q) ≈L̂S(M)

α (a⋆,Q) :=
1

1− α
log

∑
D∈S(M)

s̃(D)

(
ζ(D)pθ(A|D,Q)∑
D′∈S(M) s̃(D′)ζ(D′)

)1−α

(47)

∇θLα(A,Q) ≈
∑

D∈S(M)

s̃(D) (ζ(D)pθ(A|D,Q))
1−α∑

D′∈S(M) s̃(D′) (ζ(D′)pθ(A|D′,Q))
1−α∇θ log pθ(A,D|Q) . (48)

Monte-Carlo estimation During training, the computational budget is tight, and the RVB and its
gradient are estimated using a single set of samples S(M). During evaluation, we can leverage C ≥ 1
Monte-Carlo samples SM1 , . . . ,SMC , each containing KM documents sampled from rϕ(D|A,Q)
without replacement, to estimate the RVB (and therefore the log-likelihood) more accurately. We use
the following estimate:

p̂θ(a,Q) :=
1

C

C∑
i=1

exp L̂
S(M)
i

α (a,q)∑
a′∈A exp L̂

S(M)
i

α (a′,Q)
. (49)
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C.4 FUSION-IN-DECODER (FID)

In this work, we considered reader models pθ(a|d,q) with a single document per sample. Al-
ternatively, models such as FiD (Izacard & Grave, 2020b) implement a reader model that allows
reading multiple documents per sample. Given a set S := {d1, . . . ,dK} of documents, we denote
the multi-document reader pθ(a|S,q). Defining a distribution over the set of unique documents
p(S) with tractable sampling and density evaluation is challenging. EMDR2 (Sachan et al., 2021b)
optimized a multi-document reader jointly with a deep retriever. However, an auxiliary reader model
pθ(a|S,q) :=

∏K
i=1 pθ(a|di,q) is used to optimize a retriever model pθ(S|q) :=

∏K
i=1 pθ(di|q).

VOD can be applied by following the same strategy, and this is equivalent to optimizing a single-
sample joint reader along with a multi-sample reader:

LMULTISAMPLE := ∇θ log pθ(a|S,q)︸ ︷︷ ︸
multi-sample

reader likelihood

+
∑
d∈S

s̃(d) w̃1−α
θ,ϕ (a,d|S)∇θ log pθ(a,d|q)︸ ︷︷ ︸
single-sample RVB gradient

. (50)

D EXPERIMENTAL RESULTS

Figure 5: Measure of the divergence DKL (rϕ(d|q) || pθ(d|q)) dur-
ing the training of a VOD retriever on the USMLE dataset. The
retriever checkpoint is updated every T = 5k steps. α is annealed
from 1 to 0 during the first 5k steps. We recognize the pattern
schematized in Figure 1. In this example, the approximate posterior
is chosen as a combination of a checkpoint of the retriever and a
static BM25 component. Therefore the value of the divergence
is never zero because the divergence between the model and the
BM25 retriever is always strictly positive.

E IMPLEMENTATION

Table 8: Parameterization of the reader and retriever scores. The complexity is reported for a batch-
size of one, M answer option, and for K documents and inputs qj = [q;aj ] and d of lengths Lq and
La. When using a dual-encoder architecture, the parameters are shared across the two encoders.

Type Complexity Parameterization

dual-encoder M(L2
q +KL2

d) fθ(d,qj) = Linearθ|D(BERTθ(d))
TLinearθ|Q(BERTθ(qj))

Cross attn. MK(Lq + Ld)
2 gθ(d,qj) = Linearθ(BERTθ([d;qj ]))

Documents preprocessing We encode the text and title of all the articles using the relevant BERT
tokenizer. For each article with encoded title t of length Lt, we extract overlapping passages p of
length 200− 1− t with stride 100 tokens. For each passage, using [DOC] a special token added to
the BERT vocabulary, we format each passage as

d := [[CLS] ; [DOC] ; t ; p] . (51)

Queries preprocessing We encode all questions and answer options using the tokenizer and store
the question-answer pairs as

qj := [[CLS] ; [QUERY] ; q ; [SEP] ; aj ] (52)
where the question q is truncated such as |qj | ≤ 312 tokens and [QUERY] is an additional special
token. On the reader side, we append the document passage d to the question-answer query qj such
that qj := [d;[SEP];[QUERY];q;[SEP];aj ].
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Reader We parameterize the reader score gθ using a cross-attention model parameterized by another
BERT backbone. Each query qj = [q;aj ] is prepended with a document d, and an additional linear
layer is used to reduce the output of BERT at the CLS token to a scalar value, as originally done in
Devlin et al. (2018). See expression in Table 8.

Retriever We parameterize the retriever score fθ using a dual encoder architecture similar to DPR,
except that we share the BERT backbone across the two columns and one linear layer to project the
output of each column. See expression in Table 8.

Hyperparameters We summarize the training, evaluation and model hyperparameters in Table 9.

Table 9: Hyperparameters used across the multiple-choice ODQA experiments.

Category Parameter Value
Optimization Optimizer AdamW

Learning rate 3 · 10−6

Learning rate warmup 0.1 · T
Warmup frequency every T steps
Weight decay 1 · 10−3

Gradient clipping 0.5
Precision float16

α annealing initial value 1
final value 0
length T steps
type cosine

Model Reader BioLinkBERT + linear layer
Retriever BioLinkBERT + two linear layers
Output vector size 768

Batching batch-size 32
M (# of options) 4
K (documents per option) 8
P (retriever support size) 100
N (corpus size) 7,766.9k
document passage stride 100
Ld (document passage length) 200
max. Lq (max. query length) 312
max. Ld + Lq 512

Training T (re-indexing period length) 5k
Training steps (MedMCQA) 150k
Training steps (USMLE) 50k
Training steps (MedMCQA→USMLE) 150k→ 10k
Training steps (MedMCQA + USMLE) –
Training steps (Distillation) 120k

Posterior and retrieval parameterization f ckpt
ϕ (d, [q;a]) + τ−1 (BM25(q) + β · BM25(a))

τ (BM25 temperature) 5
β (BM25 answer weight) 1 + 0.5 max {0, log (Lq/La)}
BM25 implementation elasticsearch v7.14.1
BM25 paramters b=0.75, k1=1.2
MIPS implementation faiss v1.7.2
faiss factory string IVF1000,Flat
faiss precision float16
faiss nprobe 32

Evaluation C (Monte-Carlo samples for eval.) 10

Hardware CPU AMD EPYC 7252 8-Core Processor
RAM 256 GB
GPU 8 × Quadro RTX 5000
VRAM 128 GB

Software PyTorch Paszke et al. (2019)
Lightning Falcon
faiss Johnson et al. (2021)
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F SYMBOLS

Table 10: Mathematical symbols.

Category Symbol Description

ODQA variables a answer
d document or document passage
q question or query
La number of tokens in the answer
Ld number of tokens in the document
Lq number of tokens in the query
D corpus of documents
N number of documents in the corpus

Reader-retriever θ parameter of the retrieval-augmented model (generative model)
pθ(a,d|q) Joint reader-retriever model
wθ,ϕ(a,d,q) Importance weight
ζ(d) ratio of exponentiated scores exp fθ(d,q)/exp fϕ(a,d,q)
pθ(a|d,q) reader
pθ(d|q) retriever
fθ(d,q) score of the retriever

Posterior ϕ parameter of the approximate posterior (inference network)
rϕ(d|a,q) approximate posterior (static retriever)
fϕ(a,d,q) score of the approximate posterior
BM25(q,d) BM25 score of the query q for the document d
f ckpt
ϕ (d,q) checkpoint of the retriever fθ at step k · T
τ temperature balancing the checkpoint score and the BM25 score
β weight balancing the query and answer options BM25 terms

Truncated retriever P number of documents with non-zero mass under pθ(d|q)
Tϕ set of top-P documents ranked by fϕ

Sampling S set of K documents sampled without replacement from rϕ(d|a,q)
s(d) value of the priority weight for the document d, s(d) = 0 if d ̸∈ S
K number of document samples with K ≤ P ≤ N
C number of Monte-Carlo samples (evaluation)

Bounds log pθ(a,q) Marginal task likelihood
LVI(a,q) Variational Lower bound (ELBO)
Lα(a,q) Rényi Variational Bound (RVB)
α parameter of the RVB α ≥ 0

L̂S
α(a,q) tractable RVB estimate given a set of S samples

LK
α (a,q) standard RVB estimate given a set of K Monte-Carlo samples

DKL(rϕ(d|a,q) || pθ(d|a,q)) KL divergence between the true and the approximate posteriors

Multiple-choice ai answer option i
⋆ index of the correct answer option
qi question-answer pair [q;ai]
M number of answer options
A vector of M answer choices
D vector of M documents
Q vector of M queries (each expressed as [q;ai])
gθ(d,q) score of the reader (multiple-choice)
S(M) Cartesian product of the per-option samples S1, . . . ,SM
T ϕ Product of the per-option top-P sets Tϕ(q1), . . . ,Tϕ(qM )

Spaces and Sets Ω space of strings
R reals
(0, 1] real numbers in the interval [0, 1], 0 excluded

Operators := defined as
[·; ·] concatenation operator
× Cartesian product
DKL(rϕ(p||q) Kullback–Leibler (KL) divergence between p and q
1[x ∈ X] indicator function with value 1 if x ∈ X otherwise 0
argtopx∈X(f(x);K) top-K values from the set X as scored by f
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G MEDWIKI

Table 11: Comparing the MedWiki with the original MedQA corpus on the USMLE dataset.

Method Reader Retriever Corpus Valid. Test

Disjoint BioBERT1 BM25 MedQA2 37.68 39.54
Disjoint BioBERT1 BM25 MedWiki 38.82 40.46
Disjoint BioLinkBERT BM25 MedQA2 40.37 41.05
Disjoint BioLinkBERT BM25 MedWiki 42.21 42.25
1model weights from Lee et al. (2020), 2original corpus from Jin et al. (2021)

The MedWiki corpus is a set of Wikipedia articles collected for research on medical question
answering with low resources. Existing medical corpora, such as the MedQA corpus, are not
adequately aligned with the ODQA task and are often measly and fragmented. At the same time, all
of Wikipedia is cumbersome to use on consumer hardware. In order to reflect the true information
need of medical experts, we assembled the MedWiki corpus by using real-world medical entrance
exam questions. We queried the Wikipedia API using the answer options from all dataset splits
of USMLE and MedMCQA and retained the top-10 articles for each answer option. This corpus
includes 293.6k unique Wikipedia articles (≈ 4.5% of Wikipedia) that cover a broad range of medical
topics.

MEDQA VS. MEDWIKI

Qualitative comparison When comparing knowledge corpora, there are two key questions: "how
similar are they?" and "in what ways do they differ?". Using ElasticSearch, we compare the retrieved
documents of MedWiki to the ones of MedQA. In Table 12, 13, 14 we present a few examples.
The MedQA corpus is a selection of medical textbooks which often revolve around medical case
studies, akin to the USMLE questions (see example in Table 12). In contrast, the MedWiki corpus
references Wikipedia articles which are often edited to be concise, which is especially true for the
abstract part of the articles, which contain the basic and usually most important information about a
topic. Furthermore, each Wikipedia article comes with a title, which augments each passage with a
higher-level context.

However, our approach of querying against the Wikipedia API results in many out-of-domain articles.
For instance in Table 13, we display a MedWiki passage that originates from a non-medical article.
Although the MedQA corpus is strictly oriented toward medical topics, it was built by extracting text
from physical books using OCR software, which led to errors in the process and ultimately resulted
in part of the corpus being unreadable.

Overall, both corpora provide adequate evidence to answer USMLE questions. Nevertheless, the
MedWiki corpus is three times larger in vocabulary size and eight times more extensive in word
count, making it more robust and diverse.

Quantitative comparison We investigated how the two corpora affect the final QA accuracy on the
USMLE dataset. In contrast with the rest of the paper, we used a multi-document reader, as done in
Jin et al. (2021). We used an ElasticSearch index to retrieve the set of top 3 documents {d1,d2,d3}
for each pair (q,ai) as context for each answer option. The normalized log probabilities over the four
options were obtained by processing the set of concatenated tokens [d1;d2;d3;q;ai] with BERT.
We performed all experiments using a batch size of 16, set the learning rate to 1e-5, and run all
experiments for 30 epochs. We report the predictive accuracy averaged for three initial random seeds.

Table 11 summarizes the performance on the two corpora. We see that our collected MedWiki corpus
leads to better QA performance by 0.9%-1.2% absolute. This result indicates that the MedWiki
corpus can safely be used as a replacement of the MedQA corpus. The MedWiki yields USMLE
accuracy that is superior to using the MedQA corpus (Table 11), and yields good results on the
MedMCQA (Table 4) despite consisting in only of a fraction of the English Wikipedia.
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Question a 5 year old girl is brought to the emergency department by her mother because of multiple episodes of nausea and vomiting that last about 2
hours. during this period she has had 6 8 episodes of bilious vomiting and abdominal pain. the vomiting was preceded by fatigue. the girl feels
well between these episodes. she has missed several days of school and has been hospitalized 2 times during the past 6 months for dehydration
due to similar episodes of vomiting and nausea. the patient has lived with her mother since her parents divorced 8 months ago. her immunizations
are up to date. she is at the 60th percentile for height and 30th percentile for weight. she appears emaciated. her temperature is 36. 8 c 98. 8 f
pulse is 99 min and blood pressure is 82 52 mm hg. examination shows dry mucous membranes. the lungs are clear to auscultation. abdominal
examination shows a soft abdomen with mild diffuse tenderness with no guarding or rebound. the remainder of the physical examination shows
no abnormalities. which of the following is the most likely diagnosis?

Options A: cyclic vomiting syndrome, B: gastroenteritis, C: hypertrophic pyloric stenosis, D: gastroesophageal reflux disease

Document
from
MedQA

headache, and sweating patient presentation : be is a 45 - year - old woman who presents with concerns about sudden ( paroxysmal ), intense,
brief episodes of headache, sweating (diaphoresis), and a racing heart (palpitations). focused history : be reports that the attacks started 3 weeks
ago. they last from 2 to 10 minutes, during which time she feels quite anxious. during the attacks, it feels as though her heart is skipping beats
(arrhythmia). at first, she thought the attacks were related to recent stress at work and maybe even menopause. the last time it happened, she was
in a pharmacy and had her blood pressure taken. she was told it was 165 / 110 mm hg. be notes that she has lost weight (∼8 lbs) in this period
even though her appetite has been good. pertinent findings : the physical examination was remarkable for be ’ s thin, pale

Document
from
MedWiki

panayiotopoulos syndrome. pital, or calcarine sulci. follow - up meg demonstrated shifting localization or disappearance of meg spikes.
illustrative cases in a typical presentation of panayiotopoulos syndrome, the child looks pale, vomits, and is fully conscious, able to speak, and
understand but complains of “ feeling sick. ” two thirds of the seizures start in sleep ; the child may wake up with similar complaints while still
conscious or else may be found vomiting, conscious, confused, or unresponsive. case 1. a girl had 2 seizures in sleep at 6 years of age. in the first
fit she was found vomiting vigorously, eyes turned to one side, pale, and unresponsive. her condition remained unchanged for 3 hours before she
developed generalized tonic - clonic convulsions. she gradually improved, and by the next morning was normal. the second seizure occurred 4
months later. she awoke and told her mother that she wanted to vomit,

Table 12: An example of the retrieved documents from the MedQA and MedWiki corpus respectively. Correct answers and document titles are
highlighted when available.

Question a 40 year old woman presents with difficulty falling asleep diminished appetite and tiredness for the past 6 weeks. she says that despite going to
bed early at night she is unable to fall asleep. she denies feeling anxious or having disturbing thoughts while in bed. even when she manages to
fall asleep she wakes up early in the morning and is unable to fall back asleep. she says she has grown increasingly irritable and feels increasingly
hopeless and her concentration and interest at work have diminished. the patient denies thoughts of suicide or death. because of her diminished
appetite she has lost 4 kg 8. 8 lb in the last few weeks and has started drinking a glass of wine every night instead of eating dinner. she has no
significant past medical history and is not on any medications. which of the following is the best course of treatment in this patient?

Options A: diazepam, B: paroxetine, C: zolpidem, D: trazodone

Document
from
MedQA

headache, and sweating patient presentation : be is a 45 - year - old woman who presents with concerns about sudden ( paroxysmal ), intense,
brief episodes of headache, sweating (diaphoresis), and a racing heart (palpitations). focused history : be reports that the attacks started 3 weeks
ago. they last from 2 to 10 minutes, during which time she feels quite anxious. during the attacks, it feels as though her heart is skipping beats
(arrhythmia). at first, she thought the attacks were related to recent stress at work and maybe even menopause. the last time it happened, she was
in a pharmacy and had her blood pressure taken. she was told it was 165 / 110 mm hg. be notes that she has lost weight (∼8 lbs) in this period
even though her appetite has been good. pertinent findings : the physical examination was remarkable for be ’ s thin, pale

Document
from
MedWiki

hillary clinton’s tenure as secretary of state. hillary to the middle east to talk about how these countries can transition to new leaders —
though, i’ve got to be honest, she’s gotten a little passionate about the subject. these past few weeks it’s been tough falling asleep with hillary out
there on pennsylvania avenue shouting, throwing rocks at the window. in any case, obama’s reference to clinton travelling a lot was true enough ;
by now she had logged in her boeing 757, more than any other secretary of state for a comparable period of time, and had visited 79 countries
while in the office. time magazine wrote that "clinton’s endurance is legendary" and that she would still be going at the end of long work days
even as her staff members were glazing out. the key was her ability to fall asleep on demand, at any time and place, for power naps. clinton also
saw the potential political changes in the mideast as an opportunity for an even more fundamental change

Table 13: An example of the two different retrieved documents from the MedQA and MedWiki corpus. Correct answers and document titles are
highlighted when available.

Question a 37 year old female with a history of type ii diabetes mellitus presents to the emergency department complaining of blood in her urine left
sided flank pain nausea and fever. she also states that she has pain with urination. vital signs include temperature is 102 deg f 39. 4 deg c blood
pressure is 114 82 mmhg pulse is 96 min respirations are 18 and oxygen saturation of 97 on room air. on physical examination the patient appears
uncomfortable and has tenderness on the left flank and left costovertebral angle. which of the following is the next best step in management?

Options A: obtain an abdominal ct scan, B: obtain a urine analysis and urine culture, C: begin intravenous treatment with ceftazidime, D: no treatment
is necessary

Document
from
MedQA

rim, & quinolones camille e. beauduy, pharmd, & lisa g. winston, md ⋆ a 59 - year - old woman presents to an urgent care clinic with a 4 -
day history of frequent and painful urination. she has had fevers, chills, and flank pain for the past 2 days. her physician advised her to come
immediately to the clinic for evaluation. in the clinic she is febrile (38. 5◦c [ 101. 3◦f ]) but otherwise stable and states she is not experiencing
any nausea or vomiting. her urine dipstick test is positive for leukocyte esterase. urinalysis and urine culture are ordered. her past medical history
is significant for three urinary tract infections in the past year. each episode was uncom - plicated, treated with trimethoprim - sulfamethoxazole,
and promptly resolved. she also has osteoporosis

Document
from
MedWiki

hydronephrosis. hydronephrosis describes dilation of the renal pelvis and calyces as a result of obstruction to urine flow. signs and symptoms
the signs and symptoms of hydronephrosis depend upon whether the obstruction is acute or chronic, partial or complete, unilateral or bilateral.
hydronephrosis that occurs acutely with sudden onset (as caused by a kidney stone) can cause intense pain in the flank area (between the hips and
ribs). historically, this type of pain has been described as "dietl’s crisis". conversely, hydronephrosis that develops gradually will generally cause
either a dull discomfort or no pain. nausea and vomiting may also occur. an obstruction that occurs at the urethra or bladder outlet can cause pain
and pressure resulting from distension of the bladder. blocking the flow of urine will commonly result in urinary tract infections which can lead
to the development of stones, fever, and blood or pus in the urine

Table 14: An example of the two different retrieved documents from the MedQA and MedWiki corpus. Correct answers and document titles are
highlighted when available.
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